Skip to content

Segmentation


MAX_VIDEO_SECONDS = 18000 module-attribute

variables to consider: * punctuator net, * bert model, * cosine similarity threshold - c_threshold, * summary model - bert vs sumy, * min time to merge short clusters, * add_sentence vs deprecated, * color_histogram threshold and frame range,

VideoAnalyzer

This class analyzes videos from their ids in the path "class"-path/static/videos

_testing_path is for changing the folder path but it's used just for testing

- It provides a method to get the transcript from the youtube link associated to the id provided

- segment the transcript to obtain keyframes

- Analyze the whole video stream or frames to segment slides,text and times on screen of those

- Get the extracted text in different formats (tipically only one is used and the others are for debug)

- Check if the video contains slides (for now this means text around the center of the screen) and the proportion with respect to the whole video len

- Extract titles from the slides found

- Create thumbnails based on the slides segmentation after having analyzed the text

- Find definitions and in-depths of concepts expressed in the title of every slide

checks of valid session are performed sometimes to ensure user did not want to stop analysis

Source code in apps/annotator/code/media/segmentation.py
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
class VideoAnalyzer:
    '''
    This class analyzes videos from their ids in the path "__class__"-path/static/videos \n
    _testing_path is for changing the folder path but it's used just for testing\n\n
        - It provides a method to get the transcript from the youtube link associated to the id provided\n
        - segment the transcript to obtain keyframes\n
        - Analyze the whole video stream or frames to segment slides,text and times on screen of those\n
        - Get the extracted text in different formats (tipically only one is used and the others are for debug)\n
        - Check if the video contains slides (for now this means text around the center of the screen) and the proportion with respect to the whole video len\n
        - Extract titles from the slides found\n
        - Create thumbnails based on the slides segmentation after having analyzed the text\n
        - Find definitions and in-depths of concepts expressed in the title of every slide
    checks of valid session are performed sometimes to ensure user did not want to stop analysis
    '''
    url:str
    video_id:str
    images_path:list = None
    data:dict = None
    timed_subtitles:dict = None

    _text_in_video: list[VideoSlide] | None = None
    _cos_sim_img_threshold = None
    _frames_to_analyze = None
    _slide_startends = None
    _slide_titles = None


    def __init__(self, url:str,request_fields_from_db:list | None=None, _testing_path=None) -> None:
        if self.is_youtube_url(url):
            url = self.standardize_url(url)
            self.video_id = self.extract_video_id(url)
            self.url = url
        else:
            raise Exception("This is not a Youtube video!")

        response = requests.get(url)
        if response.status_code == 200 and ("Video non disponibile" in response.text or "Video unavailable" in response.text):
            raise Exception("Video unavailable")

        self.data = mongo.get_video_data(self.video_id, request_fields_from_db)
        if self.data is None:
            self.data = {'video_id': self.video_id,
                         'title': search(r'"title":"(.*?)"', response.text).group(1),
                         'creator': search(r'"ownerChannelName":"(.*?)"', response.text).group(1),
                         'duration': str(round(int(search(r'"approxDurationMs":"(\d+)"', response.text).group(1)) / 1000, 2)),
                         'upload_date': search(r'"uploadDate":"(.*?)"', response.text).group(1)
                        }
            self.identify_language()
            if float(self.data["duration"]) > MAX_VIDEO_SECONDS:
                raise Exception("The video is too long, please choose another video.")

        if _testing_path is None:
            self.folder_path = VIDEOS_PATH.joinpath(self.video_id)
        else:
            self.folder_path = _testing_path

    @staticmethod
    def standardize_url(url: str) -> str:
        pattern = r'(?:=|\/|&)([A-Za-z0-9_\-]{11})(?=[=/&]|\b)'
        id = re.findall(pattern,url)[0]
        return "https://www.youtube.com/watch?v="+id

    @staticmethod
    def is_youtube_url(url:str) -> bool:
        youtube_video_regex = (
            r'(https?://)?(www\.)?'
            '(youtube|youtu|youtube-nocookie)\.(com|be)/'
            '(watch\?v=|embed/|v/|.+\?v=)?([^&=%\?]{11})')

        return match(youtube_video_regex, url) is not None

    @staticmethod
    def extract_video_id(url:str):
        '''
        From a YouTube url extracts the video id
        '''
        video_link = url.split('&')[0]
        if '=' in video_link:
            return video_link.split('=')[-1]
        return video_link.split('/')[-1]

    def download_video(self):
        '''
        Downloads the video (expected YouTube video)\n
        If the video has been removed from youtube, it attempts to remove the folder from both the drive and the database, then raises an Exception\n

        --------------
        # NOTE
        There are problems very often with YouTube, which breaks yt_dlp library.\n 
        In case of errors try to update the library
        '''
        url = self.url
        #video_link = url.split('&')[0]
        video_id = self.video_id
        folder_path = self.folder_path

        os.makedirs(folder_path, exist_ok=True)

        if os.path.isfile(os.path.join(folder_path,video_id+'.mp4')):
            return

        # Both pafy and pytube seems to be not mantained anymore, only youtube_dlp is still alive

        prev_cwd = os.getcwd()
        os.chdir(folder_path)

        try:
            #print("using ytdl")
            #yt_dlp.YoutubeDL({'format': 'bestvideo[height<=480]', 'quiet': True}).download([url])
            yt_dlp.YoutubeDL({  'quiet': False,
                                'format': 'bestvideo[height<=720]+bestaudio/best[height<=720]',
                                'outtmpl': video_id+'.mp4',
                                'merge_output_format': 'mp4',
                                'ffmpeg_location': '/usr/bin/ffmpeg',
                                'postprocessors': [{
                                    'key': 'FFmpegVideoConvertor',
                                    'preferedformat': 'mp4',  # Ensure the output is in mp4 format
                                    }],
                                  }).download([url])
        except Exception as e:
            print(e)

        os.chdir(prev_cwd)

        for file in os.listdir(folder_path):
            if file.endswith(".mp4"):
                os.rename(folder_path.joinpath(file),folder_path.joinpath(video_id+"."+file.split(".")[-1]))
                vidcap = cv2.VideoCapture(folder_path.joinpath(video_id+"."+file.split(".")[-1]))
                if not vidcap.isOpened() or not min((vidcap.get(cv2.CAP_PROP_FRAME_WIDTH),vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))) >= 360:
                    raise Exception("Video does not have enough definition to find text")
                break
        if not os.path.isfile(folder_path.joinpath(video_id+".mp4")):
            raise Exception("Video has not been correctly downloaded")


    def _create_keyframes(self,start_times,end_times,S,seconds_range, image_scale:float=1,create_thumbnails=True):
        """
        Take a list of clusters and compute the color histogram on end and start of the cluster

        Parameters
        ----------
        cluster_list :
        S : scala per color histogram
        seconds_range : Adjust the start and end of segments based on the difference in color histograms.
        """
        assert len(start_times) == len(end_times)
        vsm = VideoSpeedManager(self.video_id,output_colors=COLOR_RGB)
        vid_ref = vsm.vid_ref
        vidcap = vid_ref._vidcap
        start_end_frames = [(vid_ref.get_num_frame_from_time(s_time),vid_ref.get_num_frame_from_time(e_time)) 
                                for s_time,e_time in zip(start_times,end_times)]

        curr_num_frame = 0
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, curr_num_frame)
        has_frame,curr_frame = vidcap.read()
        next_frame_offset = 10*vid_ref.get_fps()
        summation = 0
        prev_hist = []
        all_diffs = []
        while has_frame:
            curr_frame = cv2.resize(curr_frame,(240,180))
            image = cv2.cvtColor(curr_frame, cv2.COLOR_RGB2GRAY)
            hist = cv2.calcHist([image], [0], None, [32], [0, 128])
            hist = cv2.normalize(hist, hist)

            if curr_num_frame > 0 :
                diff = 0
                for i, bin in enumerate(hist):
                    diff += abs(bin[0] - prev_hist[i][0])
                all_diffs.append(diff)
                summation += diff

            curr_num_frame += next_frame_offset
            vidcap.set(cv2.CAP_PROP_POS_FRAMES, curr_num_frame)
            has_frame,curr_frame = vidcap.read()
            prev_hist = hist

            #if cv2.waitKey(1) & 0xFF == ord('q'):
            #    break
        threshold = S * (summation / curr_num_frame)

        '''
        checking if there is a scene change within a timeframe of "seconds_range" frames from the beginning and end of each cluster.
        '''
        fps = vid_ref.get_fps()

        for j,(start_f,end_f) in enumerate(start_end_frames):
            changes_found = [False,False]
            for i in range(seconds_range):
                diffs = [int(start_f / next_frame_offset),int(end_f / next_frame_offset)]
                if not changes_found[0] and diffs[0] + i < len(all_diffs) and all_diffs[diffs[0] + i] > threshold:
                    sec = (start_f + i) / fps
                    start_times[j] = round(sec,2)
                    changes_found[0] = True

                if not changes_found[1] and diffs[1] + i < len(all_diffs) and all_diffs[diffs[1] + i] > threshold:
                    sec = (end_f + i) / fps
                    end_times[j] = round(sec,2)
                    changes_found[1] = True

                if all(changes_found): break

        if not create_thumbnails:
            return list(zip(start_times, end_times))

        # saving images to show into the timeline
        images_path = []
        folder_path = VIDEOS_PATH.joinpath(self.video_id)
        for i, start_end in enumerate(start_end_frames):
            vidcap.set(cv2.CAP_PROP_POS_FRAMES, start_end[0])
            ret, image = vidcap.read()
            image = cv2.resize(image,(array([image.shape[1],image.shape[0]],dtype='f')*image_scale).astype(int))
            name_file = folder_path.joinpath(str(i) + ".jpg")
            #print(saving_position)
            #saving_position = "videos\\" + video_id + "\\" + str(start) + ".jpg"
            cv2.imwrite(name_file.__str__(), image)
            images_path.append("videos/" + self.video_id + "/" + str(i) + ".jpg")
        vsm.close()
        #print(images_path)
        self.images_path = images_path
        return list(zip(start_times, end_times))


    def request_transcript(self):
        '''
        Downloads the transcript associated with the video and returns also whether the transcript is automatically or manually generated \n
        Preferred manually generated \n
        Whisper transcription is implemented in transcribe.py called as external service and will replace youtube transcript for word level precision\n
        '''

        if "transcript_data" in self.data.keys():
            return

        # moved as external service
        #if extract_from_audio:
        #    self.data["transcript_data"] = {"text": WhisperTranscriber.transcribe(self.video_id,language), 
        #                                    "is_autogenerated": True,
        #                                    "is_whisper_transcribed": True }
        #    mongo.insert_video_data(self.data)
        #    return


        language = self.identify_language() 
        self.data["transcript_data"] = {"is_whisper_transcribed": False}

        transcripts = YTTranscriptApi.list_transcripts(self.video_id)
        transcript:Transcript
        try:
            transcript = transcripts.find_manually_created_transcript([language])
            self.data["transcript_data"]["is_autogenerated"] = False
        except:
            transcript = transcripts.find_generated_transcript([language])
            self.data["transcript_data"]["is_autogenerated"] = True

        subs_dict = transcript.fetch()
        for sub in subs_dict: sub["end"] = sub["start"] + sub.pop("duration")

        timed_subtitles = []
        for entry in subs_dict:
            if not "[" in entry["text"]:
                word = {"word":"",
                        "start":entry["start"],
                        "end": entry["end"]}
                words = []
                for word_text in entry["text"].split(" "):
                    apostrophed_words = word_text.split("'")
                    if len(apostrophed_words) > 1:
                        word = word.copy()
                        word["word"] = apostrophed_words[0]+"'"
                        words.append(word)
                    if len(apostrophed_words[-1]):
                        word = word.copy()
                        word["word"] = apostrophed_words[-1]
                        words.append(word)
                segment = {'text': entry["text"], 
                           'start': entry['start'],
                           'end': entry['end'],
                           'words': words }
                timed_subtitles.append(segment)
        self.data["transcript_data"]["text"] = timed_subtitles 

        mongo.insert_video_data(self.data)


    def transcript_segmentation(self, c_threshold=0.22, sec_min=35, S=1, frame_range=15, create_thumbnails=True):
        """
        :param c_threshold: threshold per la similarità tra frasi
        :param sec_min: se un segmento è minore di sec_min verrà unito con il successivo
        :param S: scala per color histogram
        :param frame_range: aggiustare inizio e fine dei segmenti in base a differenza nel color histogram nel frame_range
        :return: segments
        """
        if "video_data" in self.data.keys() and "segments" in self.data["video_data"].keys():
            return 
        video_id = self.video_id
        language = self.identify_language()

        # get punctuated transcription from the conll in the db
        #transcription:str = get_text(video_id)
        #if transcription is None:
        #    if self.timed_subtitles is None:
        #        self.request_transcript()
#
        #    '''Get the transcription from the subtitles'''
        #    transcription:str = " ".join([sub["text"] for sub in self.timed_subtitles["text"]])
        #    if language == Locale().get_pt1_from_full('English'):
        #        transcription:str = transcription.replace('\n', ' ').replace(">>", "") \
        #                                         .replace("Dr.","Dr").replace("dr.","dr") \
        #                                         .replace("Mr.","Mr").replace("mr.","mr")
        #print("Checking punctuation...")
        semantic_transcript = SemanticText(" ".join(timed_sentence["text"] for timed_sentence in self.data["transcript_data"]["text"] if not "[" in timed_sentence['text']),language)

        #video = mongo.get_video(video_id)

        '''Divide into sentences the punctuated transcription'''
        print("Extracting sentences..")
        sentences = [sent.replace(" ,",",").replace(" .",".") for sent in semantic_transcript.tokenize()]

        '''For each sentence, add its start and end time obtained from the subtitles'''
        timed_sentences = get_timed_sentences(self.data["transcript_data"]["text"], sentences)

        '''Define the BERT model for similarity'''
        print("Creating embeddings..")
        #model = SentenceTransformer('paraphrase-distilroberta-base-v1')
        #model = SentenceTransformer('stsb-roberta-large')

        '''Compute a vector of numbers (the embedding) to idenfity each sentence'''
        #embeddings = model.encode(sentences, convert_to_tensor=True)
        # All moved inside semantic transcript class
        embeddings = semantic_transcript.get_embeddings()

        '''Create clusters based on semantic textual similarity, using the BERT embeddings'''
        print("Creating initials segments..")
        clusters = create_cluster_list(timed_sentences, embeddings, c_threshold)


        '''Aggregate togheter clusters shorter than 40 seconds in total'''
        refined_clusters = aggregate_short_clusters(clusters, sec_min)

        start_times = []
        end_times = []

        '''Print the final result'''
        for c in refined_clusters:
            start_times.append(c.start_time)
            end_times.append(c.end_time)
        self.data["video_data"] = {"segments": list(zip(start_times, end_times))}
        mongo.insert_video_data(self.data)


        print("Reached the part of finding clusters")

        '''Find and append to each cluster the 2 most relevant sentences'''
        #num_sentences = 2
        #sumy_summary(refined_clusters, num_sentences)
        #self.transcript = semantic_transcript


        '''Adjust end and start time of each cluster based on detected scene changes'''
        #path = Path(__file__).parent.joinpath("static", "videos", video_id)
        #if not create_thumbnails:
        #    self.data["video_data"]['segments'] = self._create_keyframes(start_times, end_times, S, frame_range, create_thumbnails=False)
        #    return
#
        #if not any(File.endswith(".jpg") for File in os.listdir(path)):
        #    self.data["video_data"]['segments'] = self._create_keyframes(start_times, end_times, S, frame_range)
        #else:
        #    print("keyframes already present")
        #    images = []
        #    for File in os.listdir(path):
        #        if File.endswith(".jpg"):
        #            images.append(File.split(".")[0])
        #    images.sort(key=int)
        #    self.images_path = ["videos/" + video_id + "/" + im + ".jpg" for im in images]
        return


    #def extract_keywords(self,maxWords:int=1,minFrequency:int=3) -> None:
    #    video_doc = mongo.get_video_metadata(self.video_id)
    #    if video_doc is None:
    #        if self.transcript is None:
    #            self.transcript_segmentation_and_thumbnails(create_thumbnails=False)
    #        self.data["extracted_keywords"] = self.transcript.extract_keywords(maxWords, minFrequency)
    #        return
    #    self.data["extracted_keywords"] = video_doc["extracted_keywords"]


#######################
    def _preprocess_video(self, vsm:VideoSpeedManager,num_segments:int=150,estimate_threshold=False,_show_info=False):
        '''
        Split the video into `num_segments` windows frames, for every segment it's taken the frame that's far enough to guarantee a minimum sensibility\n
        The current frame is analyzed by XGBoost model to recognize the scene\n
        If there are two non-slide frames consecutively the resulting frame window is cut\n
        Bounds are both upper and lower inclusive to avoid a miss as much as possible\n
        Then both are compared in terms of cosine distance of their histograms (it's faster than flattening and computing on pure pixels)\n\n
        Lastly the distance between wach frame is selected as either the average of values, either with fixed value.\n
        In this instance with videos that are mostly static, the threshold is set to 0.9999
        #TODO further improvements: for more accuracy this algorithm could include frames similarity to classify a segment as slide (which is a generally very static)

        Returns
        ----------
        The cosine similarity threshold and the list of frames to analyze (tuples of starting and ending frames)

        ----------
        Example
        ----------
        A video split into 10 segments:\n\n
        slide_segments : 0,1,3,6,9,10\n
        non_slide_segments : 2,4,5,7,8\n
        results in segmentation = [(0,4),(5,7)(8,10)]\n
        with holes between segments 4-5 and 7-8
        '''
        num_frames = vsm.get_video().get_count_frames()
        step = floor(num_frames / (num_segments))
        vsm.lock_speed(step)
        iterations_counter:int = 0
        txt_cleaner = TextCleaner()
        if estimate_threshold:
            cos_sim_values = empty((num_segments,vsm.get_video().get_dim_frame()[2]))

        # Optimization is performed by doing a first coarse-grained analysis with the XGBoost model predictor
        # then set those windows inside the VideoSpeedManager
        model = XGBoostModelAdapter(Path(__file__).parent.parent.joinpath("models","xgboost500.sav").__str__())
        #XGBoostModelAdapter(os.path.dirname(os.path.realpath(__file__))+"/xgboost/model/xgboost500.sav")

        start_frame_num = None
        frames_to_analyze:List[Tuple[int,int]] = []
        answ_queue = deque([False,False])
        curr_frame = ImageClassifier(None)
        prev_frame = curr_frame.copy()
        frame_w,frame_h,num_colors = vsm.get_video().get_dim_frame()

        # Loops through num segments and for every segment checks if is a slide
        # When at least one 
        # Iterates over num segments
        while iterations_counter < num_segments:

            # Stores two frames
            prev_frame.set_img(vsm.get_frame())
            curr_frame.set_img(vsm.get_following_frame())
            if model.is_enough_slidish_like(prev_frame):
                frame = prev_frame.get_img()

                # validate slide in frame by slicing the image in a region that removes logos (that are usually in corners)
                region = (slice(int(frame_h/11),int(frame_h*8/9)),slice(int(frame_w/8),int(frame_w*7/8)))
                prev_frame.set_img(frame[region])

                # double checks the text  
                is_slide = bool(txt_cleaner.clean_text(prev_frame.extract_text(return_text=True)).strip())
                #from matplotlib import pyplot as plt; plt.figure("Figure 1"); plt.imshow(frame); plt.figure("Figure 2"); plt.imshow(prev_frame.get_img())
            else:
                is_slide = False
            answ_queue.appendleft(is_slide); answ_queue.pop()

            # if there's more than 1 True discontinuity -> cut the video
            if any(answ_queue) and start_frame_num is None:
                start_frame_num = int(clip(iterations_counter-1,0,num_segments))*step
            elif not any(answ_queue) and start_frame_num is not None:
                frames_to_analyze.append((start_frame_num,(iterations_counter-1)*step))
                start_frame_num = None

            if estimate_threshold:
                cos_sim_values[iterations_counter,:] = prev_frame.get_cosine_similarity(curr_frame)
            iterations_counter+=1
            if _show_info: print(f" Coarse-grained analysis: {ceil((iterations_counter)/num_segments * 100)}%",end='\r')
        if start_frame_num is not None:
            frames_to_analyze.append((start_frame_num,num_frames-1))

        if estimate_threshold:
            cos_sim_img_threshold = clip(average(cos_sim_values,axis=0)+var(cos_sim_values,axis=0)/2,0.9,0.9999)
        else:
            cos_sim_img_threshold = ones((1,num_colors))*0.9999

        if _show_info:
            if estimate_threshold:
                print(f"Estimated cosine similarity threshold: {cos_sim_img_threshold}")
            else:
                print(f"Cosine_similarity threshold: {cos_sim_img_threshold}")
            print(f"Frames to analyze: {frames_to_analyze} of {num_frames} total frames")
        self.data["video_data"]["slides_percentage"] = sum([frame_window[1] - frame_window[0] for frame_window in frames_to_analyze])/(num_frames-1)
        self._cos_sim_img_threshold = cos_sim_img_threshold 
        self._frames_to_analyze = frames_to_analyze    


    def analyze_video(self,_show_info:bool=True):
        """
        Analyzes a video to identify and extract slides, transitioning between different states 
        (WAITING_OPENING, OPENING, CONTENT, ENDED) based on the content of the video frames.
        It's based on the EduOpen format, so it will look for the logo and start looking for the text using a state machine based algorithm

        Parameters:
        _show_info (bool): Flag to control the display of processing information. Defaults to True.

        Returns:
        None
        """
        if not self.is_slide_video() or "slides" in self.data["video_data"].keys():
            return

        class State(Enum):
            WAITING_OPENING = auto()
            OPENING = auto()
            CONTENT = auto()
            ENDED = auto()


        video = SimpleVideo(self.video_id)
        video.set_step(video.get_fps())

        slides:list[VideoSlide] = []

        # We start looking for EduOpen
        # Then transit to content
        # Ending is optional (sometimes videos are cut)
        state_machine = {"state": list(State)[0]}
        next_state = { from_state:to_state for from_state, to_state in list(zip(list(State), list(State)[1:] + [None])) }
        prev_frame = ImageClassifier(video.get_frame())
        curr_frame = prev_frame.copy()
        speed_up_coef = 0.35
        fps = video.get_fps()
        max_speed = fps * 10
        curr_slide = None

        while True:

            # We have finished
            if not curr_frame.has_image():
                state_machine["state"] = State.ENDED

            curr_state = state_machine['state']

            # We are looking for the edu (o) pen word (the o is not recognized)
            if curr_state == State.WAITING_OPENING:
                if not curr_frame.is_same_image(prev_frame):
                    text = curr_frame.extract_text(return_text=True)
                    if "edu" in text and "pen" in text:
                        state_machine["state"] = next_state[curr_state]
                        video.set_step(video.get_fps())
                else:
                    video.set_step(np.clip(int(video._curr_step+2), 1, video.get_fps()*2, dtype=int))

            # We are looking in a change in the text that won't have edu and open in the text
            elif curr_state == State.OPENING:
                text = curr_frame.extract_text(return_text=True)
                if not "edu" in text or not "pen" in text or len(text) > 8 :
                    state_machine['state'] = next_state[curr_state]

            # We start processing slides reading the text at increasing video speed (capped at max speed) 
            # as we find same text in the image
            elif curr_state == State.CONTENT:
                texts_with_bb = curr_frame.extract_text(return_text=True, with_contours=True)

                # Found text
                if any(texts_with_bb):

                    # Create new slide
                    if curr_slide is None:
                        curr_slide = VideoSlide(texts_with_bb, (video.get_frame_index(), None))

                    # Check if it's the same slide as the one cached
                    else:
                        new_slide = VideoSlide(texts_with_bb, (video.get_frame_index(),None))

                        # If different append the previous slide setting it's end and reset the playback speed
                        if new_slide != curr_slide:
                            curr_slide.start_end_frames[-1] = (curr_slide.start_end_frames[-1][0], video.get_frame_index(True))
                            slides.append(curr_slide)
                            curr_slide = new_slide
                            video.set_step(video.get_fps()//2)

                        # If same slide increase playback speed
                        else:
                            video.set_step(int(np.clip(video._curr_step + speed_up_coef * max_speed, 0, max_speed)))

                # Not found text
                else:

                    # If there is a slide save it, set it's end and reset playback speed
                    if curr_slide is not None:
                        curr_slide.start_end_frames[-1] = (curr_slide.start_end_frames[-1][0], video.get_frame_index(True))
                        slides.append(curr_slide)
                        curr_slide = None
                        video.set_step(video.get_fps()//2)

            # If the last slide has not an end_frame because the video ended before, we assign last frame
            elif curr_state == State.ENDED:
                if curr_slide is not None and len(slides) and curr_slide != slides[-1]:
                    curr_slide.start_end_frames[-1] = (curr_slide.start_end_frames[-1][0], video.get_frame_index(True))
                    slides.append(curr_slide)
                break   

            prev_frame.set_img(curr_frame.get_img())
            curr_frame.set_img(video.get_frame())

            if _show_info: print(f"Doing {np.round((video._curr_frame_idx-video._curr_step)/video.get_count_frames()*100, 2)}%  curr step {video._curr_step} num slides {len(slides)}    ",end="\r")

        # Cleaning doubles
        # TODO need to implement method to remove gibberish
        txt_classif = TextSimilarityClassifier(comp_methods={ComparisonMethods.FUZZY_PARTIAL_RATIO, ComparisonMethods.CHARS_COMMON_DISTRIB})
        changed = True
        n_iter = 0
        while changed:
            changed = False
            for to_reverse in [False, True]:
                for slide1,slide2 in pairwise(slides, None_tail=False, reversed=to_reverse):
                    if txt_classif.is_partially_in(slide1,slide2):
                        slide2:VideoSlide
                        slide2.merge_frames(slide1)
                        slides.remove(slide1)
                        changed = True
                    n_iter += 1

            for slide1, slide2 in double_iterator(slides):
                if txt_classif.is_partially_in(slide2,slide1):
                    slide1:VideoSlide
                    slide1.merge_frames(slide2)
                    slides.remove(slide2)
                    changed = True
                n_iter += 1

        # Now correct slides offsets to the first and last frame they appear
        # TODO need to implement binary search because it's too slow
        if False:
            step = fps//5
            total = sum([len(slide.start_end_frames) for slide in slides])
            iter_ = 0
            print()
            for slide in slides:
                this_slide_text = slide._full_text
                for i, (start_frame, end_frame) in enumerate(slide.start_end_frames):

                    # Shifting start frame backward
                    video.rewind()
                    video.roll(start_frame)
                    video.set_step(-step)
                    while True:
                        other_frame_text = curr_frame.set_img(video.get_frame()).extract_text(return_text=True)

                        if (i > 0 and slide.start_end_frames[i-1][1] >= start_frame-1) or \
                           (this_slide_text != other_frame_text and not slide.txt_sim_class.are_cosine_similar(this_slide_text, other_frame_text,confidence=0.4)):
                            start_frame += step
                            break

                        start_frame -= step

                    # Shifting end frame forward
                    video.rewind()
                    video.roll(end_frame)
                    video.set_step(step)
                    while True:
                        other_frame_text = curr_frame.set_img(video.get_frame()).extract_text(return_text=True)

                        if (i+1 < len(slide.start_end_frames) and slide.start_end_frames[i+1][0] <= end_frame+1) or \
                           (this_slide_text != other_frame_text and not slide.txt_sim_class.are_cosine_similar(this_slide_text, other_frame_text,confidence=0.4)):
                            end_frame -= step
                            break

                        end_frame += step

                    iter_ += 1
                    print(f"At {iter_/total*100}%")
                    # We reassign the frames
                    slide.start_end_frames[i] = (start_frame, end_frame)

        # Convert into seconds
        for slide in slides:
            for i, (start_frame, end_frame) in enumerate(slide.start_end_frames):
                slide.start_end_frames[i] = (start_frame/fps, end_frame/fps)

        self.data["video_data"]["slides"] = [dict(tft) for tft in slides]

        mongo.insert_video_data(self.data)


#######################


############ New Methods ###########
    def identify_language(self, format:Literal['full','pt1']='pt1') -> str:
        '''
        Recognizes the video language (currently implemented ita and eng so it raises exception if not one of these)
        '''
        if not 'language' in self.data.keys():
            self.data['language'] = list(YTTranscriptApi.list_transcripts(self.video_id)._generated_transcripts.keys())[0] 

        locale = Locale()
        if not locale.is_language_supported(self.data['language']):
            raise Exception(f"Language is not between supported ones: {locale.get_supported_languages()}")
        return self.data['language'] if format =='pt1' else locale.get_full_from_pt1(self.data['language'])

    def analyze_transcript(self, _debug_reload_from_json=False):

        #assert self.identify_language() == "it", "implementation error cannot analyze other language transcripts here"
        if _debug_reload_from_json:
            self.data["transcript_data"].pop("ItaliaNLP_doc_id", None)
            from pathlib import Path
            from json import load
            with open(VIDEOS_PATH.joinpath(self.video_id,self.video_id+".json")) as f:
                self.data["transcript_data"]["text"] = load(f)["segments"]
        if "ItaliaNLP_doc_id" in self.data["transcript_data"].keys():
            return

        timed_transcript = self.data["transcript_data"]["text"].copy()        
        language = self.identify_language()
        doc_id, tagged_transcript = WhisperToPosTagged(language).request_tagged_transcript(self.video_id, timed_transcript)

        #with open("transcript.json","w") as f:
        #    json.dump({"transcript": self.data["transcript_data"]["text"], "lemmas": self.data["transcript_data"]["lemmas"]},f,indent=4)

        self.data["transcript_data"]["text"] = tagged_transcript
        self.data["transcript_data"].update({ "ItaliaNLP_doc_id":   doc_id })

        mongo.insert_video_data(self.data)

    def request_terms(self, _debug_recompute:bool=False):
        if not _debug_recompute:
            if "terms" in self.data["transcript_data"].keys() and any(self.data["transcript_data"]["terms"]):
                return

        language = self.identify_language()
        if language == "it":
            terms = ItaliaNLAPI().execute_term_extraction(self.data["transcript_data"]["ItaliaNLP_doc_id"])
        elif language == "en":
            terms = extract_keywords_LEGACY(" ".join(timed_sentence["text"] for timed_sentence in self.data["transcript_data"]["text"] if not "[" in timed_sentence['text']))
        self.data["transcript_data"].update({"terms": terms.to_dict('records')})
        mongo.insert_video_data(self.data)

    def filter_terms(self, filtering_opts:dict=None):
        if filtering_opts is None:
            filtering_opts = {"domain_relevance_thresh": 80}
        terms = DataFrame(self.data["transcript_data"]["terms"]) 
        if terms.empty:
            terms = DataFrame(columns=["term", "domain_relevance", "frequency"])
        self.data["transcript_data"]["terms"] = terms[terms["domain_relevance"] > filtering_opts["domain_relevance_thresh"]].to_dict("records")


    def lemmatize_an_italian_term(self, term):
        nlp = NLPSingleton()
        doc = nlp.lemmatize(term["term"],'it')
        term["lemma"] = term["term"]
        head = {}
        for token in doc:
            if token.dep_ == "ROOT":
                head["text"] = token.text
                head["lemma"] = token.lemma_
                #head["gen"] = token.morph.get("Gender")[0] if len(token.morph.get("Gender")) else ""
                #head["num"] = token.morph.get("Number")[0] if len(token.morph.get("Number")) else ""

        # if the lemma of the head matches or there is a frequency of 1, use it as it is
        if head["lemma"] == head["text"] or term["frequency"] == 1:
            return term

        lemmas = [token.lemma_ for token in doc]

        words = re.split(r"(?: )|(?='[^ ]+)", term["term"])
        for indx, word in enumerate(words):
            if word.startswith("'"):
                words[indx-1] += "'"
                words[indx] = word[1:]

        # Counting term occurrences
        curr_word_indx = 0
        term_variants = [[]]
        if not "variants" in term.keys():
            for sentence in self.data["transcript_data"]["text"]:
                for word in sentence["words"]:
                    if curr_word_indx == len(lemmas):
                        term_variants.append([])
                        curr_word_indx = 0
                    if word["lemma"] == lemmas[curr_word_indx]:
                        term_variants[-1].append(word["word"])
                        curr_word_indx += 1
                    elif curr_word_indx > 0 and word["lemma"] != lemmas[curr_word_indx]:
                        term_variants[-1] = []
                        curr_word_indx = 0
            term_variants = [" ".join(occurence) for occurence in term_variants if len(occurence)]
        else:
            term_variants = term["variants"]

        # TODO probably a wrong lemmatization and mismatch between spacy and ItaliaNLP
        # Keep the lemma as the term
        if len(term_variants) == 0:
            return term

        # If i have a verb as single lemma and all it's variants are identified as VERB 
        # (minimize risk of context errors of spacy like "accusa" in a text like "l'accusa decise di" that becomes "accusare")
        # TODO but may still happen in case of few occurrences
        if len(lemmas) == 1 and doc[0].pos_ == "VERB" and len(term_variants) > 0:
            is_verb = True
            for variant in term_variants:
                doc = nlp.lemmatize(variant,'it')
                if len(doc) != 1 or doc[0].pos_ != "VERB":
                    is_verb = False
                    break
            if is_verb:
                term["lemma"] = lemmas[0]
                return term            

        # Taking the most recurrent version and the lemmatized version if tie
        counts = Counter(term_variants).most_common()
        print(counts, lemmas)
        targetLemma = (counts[0][0],counts[0][1])

        # Look for all the occurrences, if it's present an occurence equal to the lemmatized version, take that
        for curr_lemma, curr_occurrences in counts:
            if curr_lemma == " ".join(lemmas):
                term["lemma"] = curr_lemma
                return term


        term["lemma"] = targetLemma[0]
        return term

    def lemmatize_terms(self):
        terms = self.data["transcript_data"]["terms"]
        lang = self.identify_language()
        if lang == "en":
            sem_text = SemanticText("", language=lang)
            return [" ".join(sem_text.set_text(term["term"]).lemmatize()).replace(" ’","’") for term in terms]
        else:
            # For every term check if the 
            for term in terms:
                term.update(self.lemmatize_an_italian_term(term))
            return [term["lemma"] for term in terms]

####################################


    def get_extracted_text(self,format:Literal['str','list','list[text,box]','set[times]','list[text,time,box]','list[time,list[text,box]]','list[id,text,box]']='list'): 
        """
        Returns the text extracted from the video.\n
        Text can be cleaned from non-alphanumeric characters or not.

        Parameters :
        ------------
        - format (str): The desired format of the output. Defaults to 'list[text_id, timed-tuple]'.
            - 'str': single string with the text joined together.\n
            - 'list': list of VideoSlides\n
            - 'set[times] : list of unique texts' times (in seconds) (used for creation of thumbnails)
            - 'list[time,list[text,box]]': a list of (times, list of (sentence, bounding-box))
            - 'list[text,box]': list of texts with bounding boxes
            - 'list[id,text,box]': list of tuple of id, text, and bounding boxes
            - 'list[text,time,box]': list of repeated times (in seconds) for every text_bounding_boxed
            - 'list[tuple(id,timed-text)]': list of tuples made of (startend times in seconds, text as string present in those frames)
        """
        if self._text_in_video is None:
            return None
        if format=='list':
            return self._text_in_video
        elif format=='str':
            return ' '.join([tft.get_full_text() for tft in self._text_in_video])
        elif format=='set[times]':
            out = []
            video = LocalVideo(self.video_id)
            for tft in self._text_in_video:
                out.extend([(video.get_time_from_num_frame(st_en_frames[0]),video.get_time_from_num_frame(st_en_frames[1])) for st_en_frames in tft.start_end_frames])
            return out
        elif format=='list[text,box]':
            out_lst = []
            for tft in self._text_in_video:
                out_lst.extend(tft.get_framed_sentences())
            return out_lst
        elif format=='list[id,text,box]':
            timed_text_with_bb = []
            _id = 0
            for tft in self._text_in_video:
                for sentence,bb in tft.get_framed_sentences():
                    timed_text_with_bb.append((_id,sentence,bb))
                    _id +=1
            return timed_text_with_bb
        elif format=='list[text,time,box]':
            timed_text_with_bb = []
            video = LocalVideo(self.video_id)
            for tft in self._text_in_video:
                st_en_frames = tft.start_end_frames[0]
                for sentence,bb in tft.get_framed_sentences():
                    timed_text_with_bb.append((sentence.strip('\n'),(video.get_time_from_num_frame(st_en_frames[0]),video.get_time_from_num_frame(st_en_frames[1])),bb))
            return timed_text_with_bb
        elif format=='list[time,list[text,box]]':
            video = LocalVideo(self.video_id)
            timed_text = []
            texts = self._text_in_video
            for tft in texts:
                for startend in tft.start_end_frames:
                    insort_left(timed_text,((video.get_time_from_num_frame(startend[0]),video.get_time_from_num_frame(startend[1])), tft.get_full_text()))
            return timed_text
        elif format=='list[tuple(id,timed-text)]':
            video = LocalVideo(self.video_id)
            return [(id,(video.get_time_from_num_frame(startend[0]),video.get_time_from_num_frame(startend[1])), tft.get_full_text()) 
                            for id, tft in enumerate(self._text_in_video) 
                            for startend in tft.start_end_frames]


    def is_slide_video(self,slide_frames_percent_threshold:float=0.5,_show_info=True):
        '''
        Computes a threshold against a value that can be calculated or passed as precomputed_value

        Returns
        -------
        value and slide frames if return value is True\n
        else\n
        True and slide frames if percentage of recognized slidish frames is above the threshold
        '''
        if not "slides_percentage" in self.data["video_data"].keys():
            print(self.data["video_data"])
            self._preprocess_video(vsm=VideoSpeedManager(self.video_id,COLOR_RGB),_show_info=_show_info)
            mongo.insert_video_data(self.data)
        return self.data["video_data"]['slides_percentage'] > slide_frames_percent_threshold


    def extract_slides_title(self,quant:float=.8,axis_for_outliers_detection:Literal['w','h','wh']='h',union=True,with_times=True) -> list:
        """
        Titles are extracted by performing statistics on the axis defined, computing a threshold based on quantiles\n
        and merging results based on union of results or intersection\n
        #TODO improvements: now the analysis is performed on the whole list of sentences, but can be performed:\n
            - per slide\n
            - then overall\n
        but i don't know if can be beneficial, depends on style of presentation. 
        For now the assumption is that there's uniform text across all the slides and titles are generally bigger than the other text

        Then titles are further more filtered by choosing that text whose size is above the threshold, only if it's
        the first sentence of the slide\n

        Prerequisites :
        ------------
        Must have runned analyze_video()ffmpeg -i /home/gaggio/Documents/Research/ekeel/EVA_apps/EKEELVideoAnnotation/static/videos/lskmIRldsyU/lskmIRldsyU.mp4 -o /home/gaggio/Documents/Research/ekeel/EVA_apps/EKEELVideoAnnotation/static/videos/lskmIRldsyU/lskmIRldsyU.wav

        Parameters :
        ----------
        - quant : quantile as lower bound for outlier detection
        - axis_for_outliers_detection : axis considered for analysis are 'width' or 'height' or both 
        - union : lastly it's perfomed a union of results (logical OR) or an intersection (logical AND)
        - with_times : if with_times returns a list of tuples(startend_frames, text, bounding_box)
                otherwise startend_frames are omitted

        Returns :
        ---------
        List of all the detected titles
        """
        assert axis_for_outliers_detection in {'w','h','wh'} and 0 < quant < 1 and self.get_extracted_text(format='list[text,time,box]') is not None
        # convert input into columns slice for analysis
        sliced_columns = {'w':slice(2,3),'h':slice(3,4),'wh':slice(2,4)}[axis_for_outliers_detection]
        texts_with_bb = self.get_extracted_text(format='list[text,time,box]')

        # select columns
        axis_array = array([text_with_bb[2][sliced_columns] for text_with_bb in texts_with_bb],dtype=dtype('float','float'))

        # compute statistical analysis on columns
        indices_above_threshold = list(where((axis_array > quantile(axis_array,quant,axis=0)).any(axis=1))[0]) if union else \
                                  list(where((axis_array > quantile(axis_array,quant,axis=0)).all(axis=1))[0])

        slides_group = []
        # group by slide
        # x[0] is one element of indices_above_threshold to compare, x[1] is another
        # [1] accesses the startend seconds of that VideoSlide  [text, startend, bounding_boxes]
        # [0] picks the start second of that object [start_second, end_second]
        for _,g in groupby(enumerate(indices_above_threshold),lambda x: texts_with_bb[x[0]][1][0] - texts_with_bb[x[1]][1][0]):
            slides_group.append(list(reversed(list(map(lambda x:x[1], g)))))
        slides_group = list(reversed(slides_group))

        # remove indices of text that are classified as titles but are just big text that's not at the top of every slide
        for group in slides_group:
            for indx_text in group:
                if indx_text > 0 and indx_text-1 not in group and (                        # if i'm not at the first index and the text of the previous index is not in the group
                   texts_with_bb[indx_text-1][1][0] == texts_with_bb[indx_text][1][0] and  # and the text is in the same slide
                   texts_with_bb[indx_text-1][2][1] < texts_with_bb[indx_text][2][1]):     # and has a y value lower than my current text (there's another sentence before this one)
                    indices_above_threshold.remove(indx_text)

        # selects the texts from the list of texts
        if len(indices_above_threshold) == 0:
            return None

        if not with_times:
            if len(indices_above_threshold) > 1:
                return itemgetter(*indices_above_threshold)(list(zip(*list(zip(*texts_with_bb))[0:3:2])))
            return [itemgetter(*indices_above_threshold)(list(zip(*list(zip(*texts_with_bb))[0:3:2])))]
        if len(indices_above_threshold) > 1:
            return itemgetter(*indices_above_threshold)(texts_with_bb)
        return [itemgetter(*indices_above_threshold)(texts_with_bb)]


    def create_thumbnails(self):
        '''
        Create thumbnails of keyframes from slide segmentation
        '''

        #times = self._slide_startends
        #if times is None:
        #    times = sorted(self.get_extracted_text(format='set[times]'))
        #else:
        #    times = sorted(times)

        images_path = []
        path = VIDEOS_PATH.joinpath(self.video_id) #os.path.dirname(os.path.abspath(__file__))
        if any(File.endswith(".jpg") for File in os.listdir(path)):
            for file in sorted(os.listdir(path)):
                if file.endswith(".jpg"):
                    images_path.append(f"videos/{self.video_id}/{file}")
            self.images_path = images_path
            return

        times = self.data["video_data"]["segments"]
        video = LocalVideo(self.video_id)
        for i,(start_seconds,_) in enumerate(times):
            video.set_num_frame(video.get_num_frame_from_time(start_seconds+0.5))
            image = video.extract_next_frame()
            file_name = str(i) + ".jpg"
            image_file_dir = path.joinpath(file_name)
            cv2.imwrite(image_file_dir.__str__(), image)
            images_path.append(f"videos/{self.video_id}/{i}.jpg")

        self.images_path = images_path

    @staticmethod
    def seconds_to_h_mm_ss_dddddd(time:float):
        millisec = str(time%1)[2:8]
        millisec += '0'*(6-len(millisec))
        seconds = str(int(time)%60)
        seconds = '0'*(2-len(seconds)) + seconds
        minutes = str(int(time/60))
        minutes = '0'*(2-len(minutes)) + minutes
        hours = str(int(time/3600))
        return hours+':'+minutes+':'+seconds+'.'+millisec


    def adjust_or_insert_definitions_and_indepth_times(self,burst_concepts:List[dict],definition_tol_seconds:float = 3,_show_output=False):
        '''
        This is an attempt to find definitions from timed sentences of the transcript and the timed titles of the slides.\n
        Heuristic is that if there's a keyword in the title of a slide (frontpage slide excluded)
        find the first occurence of that keyword in the transcript within a tolerance seconds window before and after the appearance of the slide
        set that as "definition" only if it contains the keyword of the title .\n 
        Heuristic for the in-depth is that after definition there's an in-depth of the slide, this means that the concept is explained further there, until the slide with that title won't disappear.\n

        On the algorithmic side sentences of the transcript used by the heuristic are mapped to the conll version of the text,
        cleaning operation is performed to remove errors (it groups the contiguous hit of every used sentence of the transcript to the conll by groups len and picks the biggest)\n
        Then the mapped sentences are aggregated by start and end sentence ids\n
        Lastly if the burst analysis has different definition times it is overwritten, if it does not contain the definition, this is appended at the end
        '''
        if self._slide_titles is None:
            raise Exception('slide titles not set')


        # extract definitions and in-depths in the transcript of every title based on slide show time and concept citation (especially with definition)
        timed_sentences = get_timed_sentences(self.request_transcript()[0],[sent.data["text"] for sent in parse(get_text(self.video_id,return_conll=True)[1])])

        video_defs = {}
        video_in_depths = {}
        is_introductory_slide = True
        for title in self._slide_titles:
            if is_introductory_slide or title['start_end_seconds'] == start_end_times_introductory_slides: # TODO is there always an introductory slide?
                start_end_times_introductory_slides = title['start_end_seconds']
                is_introductory_slide = False
            else:
                start_time_title,end_time_title = title['start_end_seconds']
                title_lowered = title["text"].lower()
                title_keyword = [burst_concept['concept'] for burst_concept in burst_concepts if burst_concept['concept'] in title_lowered]
                if len(title_keyword) > 0:
                    title_keyword = title_keyword[0]
                else:
                    title_keyword = SemanticText(title['text'],self.data['language']).extract_keywords_from_title()[0]
                for sent_id, timed_sentence in enumerate(timed_sentences):
                    if title_keyword not in video_defs.keys() and \
                       abs(start_time_title - timed_sentence['start']) < definition_tol_seconds and \
                       title_keyword in timed_sentence['text']:
                        if _show_output:
                            print()
                            print('********** Here comes the definition of the following keyword *******')
                            print(f'keyword from title: {title_keyword}')
                            print(f"time: {str(timed_sentence['start'])[:5]} : {str(timed_sentence['end'])[:5]}  |  sentence: {timed_sentence['text']}")
                            print()
                        #timed_sentence['id'] = ts_id
                        video_defs[title_keyword] = [(sent_id,timed_sentence)]

                    # enlarge end time threshold to incorporate split slides with the same title
                    if title_keyword in video_defs.keys() and \
                       end_time_title > timed_sentence['end'] - 1 and \
                       timed_sentence['start'] > video_defs[title_keyword][0][1]['start']: # and \
                       #txt_classif.is_partially_in_txt_version(title_keywords[0],timed_sentence['text']):
                        if title_keyword not in video_in_depths.keys():
                            if _show_output:
                                print('********** Here comes the indepth of the following keyword *******')
                                print(f'keyword from title: {title_keyword}')
                                print(f"time: {str(timed_sentence['start'])[:5]} : {str(timed_sentence['end'])[:5]}  |  sentence: {timed_sentence['text']}")
                            #timed_sentence['id'] = ts_id
                            video_in_depths[title_keyword] = [(sent_id,timed_sentence)]

                        elif not any([True for _,tmd_sentence in video_in_depths[title_keyword] if tmd_sentence['start'] == timed_sentence['start']]):
                            #timed_sentence['id'] = ts_id
                            video_in_depths[title_keyword].append((sent_id,timed_sentence))
                            if _show_output:
                                print(f"time: {str(timed_sentence['start'])[:5]} : {str(timed_sentence['end'])[:5]}  |  sentence: {timed_sentence['text']}")

        # Creating or modifying burst_concept definition of the video results 
        added_concepts = []
        concepts_used = {concept:False for concept in video_defs.keys()}
        concept_description_type = "Definition"
        for burst_concept in burst_concepts:
            if burst_concept["concept"] in video_defs.keys() and burst_concept["description_type"] == concept_description_type:

                if burst_concept["start_sent_id"] != video_defs[burst_concept["concept"]][0][0] or \
                   burst_concept["end_sent_id"] != video_defs[burst_concept["concept"]][-1][0]:
                    burst_concept_name = burst_concept['concept']
                    burst_concept['start_sent_id'] = video_defs[burst_concept_name][0][0]
                    burst_concept['end_sent_id'] = video_defs[burst_concept_name][-1][0]
                    burst_concept['start'] = self.seconds_to_h_mm_ss_dddddd(video_defs[burst_concept_name][0][1]["start"])
                    burst_concept['end'] = self.seconds_to_h_mm_ss_dddddd(video_defs[burst_concept_name][-1][1]["end"])
                    burst_concept['creator'] = "Video_Analysis"
                    concepts_used[burst_concept_name] = True

        for concept_name in video_defs.keys():
            if not concepts_used[concept_name]:
                burst_concepts.append({ 'concept':concept_name,
                                        'start_sent_id':video_defs[concept_name][0][0],
                                        'end_sent_id':video_defs[concept_name][-1][0],
                                        'start':self.seconds_to_h_mm_ss_dddddd(video_defs[concept_name][0][1]['start']),
                                        'end':self.seconds_to_h_mm_ss_dddddd(video_defs[concept_name][-1][1]["end"]),
                                        'description_type':concept_description_type,
                                        'creator':'Video_Analysis'})
                if not concept_name in added_concepts:
                    added_concepts.append(concept_name)

        # In Depths must be managed differently since there can be more than one
        concepts_used = {concept:False for concept in video_in_depths.keys()}
        concept_description_type = "In Depth"
        for video_concept_name in video_in_depths.keys():
            most_proximal = {'found':False}
            for id_, burst_concept in reversed(list(enumerate(burst_concepts))):

                if burst_concept["concept"] == video_concept_name and burst_concept["description_type"] == concept_description_type:
                    if not most_proximal["found"]:
                        most_proximal['found'] = True
                        most_proximal["id"] = id_
                        most_proximal['diff_start_sent_id'] = abs(burst_concept['start_sent_id']-video_in_depths[video_concept_name][0][0])
                        most_proximal['diff_end_sent_id'] = abs(burst_concept['end_sent_id']-video_in_depths[video_concept_name][-1][0])
                    else:
                        if most_proximal['diff_start_sent_id'] > abs(burst_concept['start_sent_id']-video_in_depths[video_concept_name][0][0]):
                            most_proximal["id"] = id_
                            most_proximal['diff_start_sent_id'] = abs(burst_concept['start_sent_id']-video_in_depths[video_concept_name][0][0])
                            most_proximal['diff_end_sent_id'] = abs(burst_concept['end_sent_id']-video_in_depths[video_concept_name][-1][0])

                elif most_proximal['found'] and burst_concept["concept"] != video_concept_name:
                    target_concept = burst_concepts[most_proximal['id']]
                    target_concept['start'] = self.seconds_to_h_mm_ss_dddddd(video_in_depths[video_concept_name][0][1]["start"])
                    target_concept['end'] = self.seconds_to_h_mm_ss_dddddd(video_in_depths[video_concept_name][-1][1]["end"])
                    target_concept['start_sent_id'] = video_in_depths[video_concept_name][0][0]
                    target_concept['end_sent_id'] = video_in_depths[video_concept_name][-1][0]
                    target_concept['creator'] = 'Video_Analysis'
                    break

            if not most_proximal['found']:
                burst_concepts.append({ 'concept':video_concept_name,
                                        'start_sent_id':video_in_depths[video_concept_name][0][0],
                                        'end_sent_id':video_in_depths[video_concept_name][-1][0],
                                        'start':self.seconds_to_h_mm_ss_dddddd(video_in_depths[video_concept_name][0][1]['start']),
                                        'end':self.seconds_to_h_mm_ss_dddddd(video_in_depths[video_concept_name][-1][1]["end"]),
                                        'description_type':concept_description_type,
                                        'creator':'Video_Analysis'})
                if not concept_name in added_concepts:
                    added_concepts.append(concept_name)

        return added_concepts,burst_concepts

adjust_or_insert_definitions_and_indepth_times(burst_concepts, definition_tol_seconds=3, _show_output=False)

This is an attempt to find definitions from timed sentences of the transcript and the timed titles of the slides.

Heuristic is that if there's a keyword in the title of a slide (frontpage slide excluded) find the first occurence of that keyword in the transcript within a tolerance seconds window before and after the appearance of the slide set that as "definition" only if it contains the keyword of the title .

Heuristic for the in-depth is that after definition there's an in-depth of the slide, this means that the concept is explained further there, until the slide with that title won't disappear.

On the algorithmic side sentences of the transcript used by the heuristic are mapped to the conll version of the text, cleaning operation is performed to remove errors (it groups the contiguous hit of every used sentence of the transcript to the conll by groups len and picks the biggest)

Then the mapped sentences are aggregated by start and end sentence ids

Lastly if the burst analysis has different definition times it is overwritten, if it does not contain the definition, this is appended at the end

Source code in apps/annotator/code/media/segmentation.py
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
def adjust_or_insert_definitions_and_indepth_times(self,burst_concepts:List[dict],definition_tol_seconds:float = 3,_show_output=False):
    '''
    This is an attempt to find definitions from timed sentences of the transcript and the timed titles of the slides.\n
    Heuristic is that if there's a keyword in the title of a slide (frontpage slide excluded)
    find the first occurence of that keyword in the transcript within a tolerance seconds window before and after the appearance of the slide
    set that as "definition" only if it contains the keyword of the title .\n 
    Heuristic for the in-depth is that after definition there's an in-depth of the slide, this means that the concept is explained further there, until the slide with that title won't disappear.\n

    On the algorithmic side sentences of the transcript used by the heuristic are mapped to the conll version of the text,
    cleaning operation is performed to remove errors (it groups the contiguous hit of every used sentence of the transcript to the conll by groups len and picks the biggest)\n
    Then the mapped sentences are aggregated by start and end sentence ids\n
    Lastly if the burst analysis has different definition times it is overwritten, if it does not contain the definition, this is appended at the end
    '''
    if self._slide_titles is None:
        raise Exception('slide titles not set')


    # extract definitions and in-depths in the transcript of every title based on slide show time and concept citation (especially with definition)
    timed_sentences = get_timed_sentences(self.request_transcript()[0],[sent.data["text"] for sent in parse(get_text(self.video_id,return_conll=True)[1])])

    video_defs = {}
    video_in_depths = {}
    is_introductory_slide = True
    for title in self._slide_titles:
        if is_introductory_slide or title['start_end_seconds'] == start_end_times_introductory_slides: # TODO is there always an introductory slide?
            start_end_times_introductory_slides = title['start_end_seconds']
            is_introductory_slide = False
        else:
            start_time_title,end_time_title = title['start_end_seconds']
            title_lowered = title["text"].lower()
            title_keyword = [burst_concept['concept'] for burst_concept in burst_concepts if burst_concept['concept'] in title_lowered]
            if len(title_keyword) > 0:
                title_keyword = title_keyword[0]
            else:
                title_keyword = SemanticText(title['text'],self.data['language']).extract_keywords_from_title()[0]
            for sent_id, timed_sentence in enumerate(timed_sentences):
                if title_keyword not in video_defs.keys() and \
                   abs(start_time_title - timed_sentence['start']) < definition_tol_seconds and \
                   title_keyword in timed_sentence['text']:
                    if _show_output:
                        print()
                        print('********** Here comes the definition of the following keyword *******')
                        print(f'keyword from title: {title_keyword}')
                        print(f"time: {str(timed_sentence['start'])[:5]} : {str(timed_sentence['end'])[:5]}  |  sentence: {timed_sentence['text']}")
                        print()
                    #timed_sentence['id'] = ts_id
                    video_defs[title_keyword] = [(sent_id,timed_sentence)]

                # enlarge end time threshold to incorporate split slides with the same title
                if title_keyword in video_defs.keys() and \
                   end_time_title > timed_sentence['end'] - 1 and \
                   timed_sentence['start'] > video_defs[title_keyword][0][1]['start']: # and \
                   #txt_classif.is_partially_in_txt_version(title_keywords[0],timed_sentence['text']):
                    if title_keyword not in video_in_depths.keys():
                        if _show_output:
                            print('********** Here comes the indepth of the following keyword *******')
                            print(f'keyword from title: {title_keyword}')
                            print(f"time: {str(timed_sentence['start'])[:5]} : {str(timed_sentence['end'])[:5]}  |  sentence: {timed_sentence['text']}")
                        #timed_sentence['id'] = ts_id
                        video_in_depths[title_keyword] = [(sent_id,timed_sentence)]

                    elif not any([True for _,tmd_sentence in video_in_depths[title_keyword] if tmd_sentence['start'] == timed_sentence['start']]):
                        #timed_sentence['id'] = ts_id
                        video_in_depths[title_keyword].append((sent_id,timed_sentence))
                        if _show_output:
                            print(f"time: {str(timed_sentence['start'])[:5]} : {str(timed_sentence['end'])[:5]}  |  sentence: {timed_sentence['text']}")

    # Creating or modifying burst_concept definition of the video results 
    added_concepts = []
    concepts_used = {concept:False for concept in video_defs.keys()}
    concept_description_type = "Definition"
    for burst_concept in burst_concepts:
        if burst_concept["concept"] in video_defs.keys() and burst_concept["description_type"] == concept_description_type:

            if burst_concept["start_sent_id"] != video_defs[burst_concept["concept"]][0][0] or \
               burst_concept["end_sent_id"] != video_defs[burst_concept["concept"]][-1][0]:
                burst_concept_name = burst_concept['concept']
                burst_concept['start_sent_id'] = video_defs[burst_concept_name][0][0]
                burst_concept['end_sent_id'] = video_defs[burst_concept_name][-1][0]
                burst_concept['start'] = self.seconds_to_h_mm_ss_dddddd(video_defs[burst_concept_name][0][1]["start"])
                burst_concept['end'] = self.seconds_to_h_mm_ss_dddddd(video_defs[burst_concept_name][-1][1]["end"])
                burst_concept['creator'] = "Video_Analysis"
                concepts_used[burst_concept_name] = True

    for concept_name in video_defs.keys():
        if not concepts_used[concept_name]:
            burst_concepts.append({ 'concept':concept_name,
                                    'start_sent_id':video_defs[concept_name][0][0],
                                    'end_sent_id':video_defs[concept_name][-1][0],
                                    'start':self.seconds_to_h_mm_ss_dddddd(video_defs[concept_name][0][1]['start']),
                                    'end':self.seconds_to_h_mm_ss_dddddd(video_defs[concept_name][-1][1]["end"]),
                                    'description_type':concept_description_type,
                                    'creator':'Video_Analysis'})
            if not concept_name in added_concepts:
                added_concepts.append(concept_name)

    # In Depths must be managed differently since there can be more than one
    concepts_used = {concept:False for concept in video_in_depths.keys()}
    concept_description_type = "In Depth"
    for video_concept_name in video_in_depths.keys():
        most_proximal = {'found':False}
        for id_, burst_concept in reversed(list(enumerate(burst_concepts))):

            if burst_concept["concept"] == video_concept_name and burst_concept["description_type"] == concept_description_type:
                if not most_proximal["found"]:
                    most_proximal['found'] = True
                    most_proximal["id"] = id_
                    most_proximal['diff_start_sent_id'] = abs(burst_concept['start_sent_id']-video_in_depths[video_concept_name][0][0])
                    most_proximal['diff_end_sent_id'] = abs(burst_concept['end_sent_id']-video_in_depths[video_concept_name][-1][0])
                else:
                    if most_proximal['diff_start_sent_id'] > abs(burst_concept['start_sent_id']-video_in_depths[video_concept_name][0][0]):
                        most_proximal["id"] = id_
                        most_proximal['diff_start_sent_id'] = abs(burst_concept['start_sent_id']-video_in_depths[video_concept_name][0][0])
                        most_proximal['diff_end_sent_id'] = abs(burst_concept['end_sent_id']-video_in_depths[video_concept_name][-1][0])

            elif most_proximal['found'] and burst_concept["concept"] != video_concept_name:
                target_concept = burst_concepts[most_proximal['id']]
                target_concept['start'] = self.seconds_to_h_mm_ss_dddddd(video_in_depths[video_concept_name][0][1]["start"])
                target_concept['end'] = self.seconds_to_h_mm_ss_dddddd(video_in_depths[video_concept_name][-1][1]["end"])
                target_concept['start_sent_id'] = video_in_depths[video_concept_name][0][0]
                target_concept['end_sent_id'] = video_in_depths[video_concept_name][-1][0]
                target_concept['creator'] = 'Video_Analysis'
                break

        if not most_proximal['found']:
            burst_concepts.append({ 'concept':video_concept_name,
                                    'start_sent_id':video_in_depths[video_concept_name][0][0],
                                    'end_sent_id':video_in_depths[video_concept_name][-1][0],
                                    'start':self.seconds_to_h_mm_ss_dddddd(video_in_depths[video_concept_name][0][1]['start']),
                                    'end':self.seconds_to_h_mm_ss_dddddd(video_in_depths[video_concept_name][-1][1]["end"]),
                                    'description_type':concept_description_type,
                                    'creator':'Video_Analysis'})
            if not concept_name in added_concepts:
                added_concepts.append(concept_name)

    return added_concepts,burst_concepts

analyze_video(_show_info=True)

Analyzes a video to identify and extract slides, transitioning between different states (WAITING_OPENING, OPENING, CONTENT, ENDED) based on the content of the video frames. It's based on the EduOpen format, so it will look for the logo and start looking for the text using a state machine based algorithm

Parameters: _show_info (bool): Flag to control the display of processing information. Defaults to True.

Returns: None

Source code in apps/annotator/code/media/segmentation.py
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
def analyze_video(self,_show_info:bool=True):
    """
    Analyzes a video to identify and extract slides, transitioning between different states 
    (WAITING_OPENING, OPENING, CONTENT, ENDED) based on the content of the video frames.
    It's based on the EduOpen format, so it will look for the logo and start looking for the text using a state machine based algorithm

    Parameters:
    _show_info (bool): Flag to control the display of processing information. Defaults to True.

    Returns:
    None
    """
    if not self.is_slide_video() or "slides" in self.data["video_data"].keys():
        return

    class State(Enum):
        WAITING_OPENING = auto()
        OPENING = auto()
        CONTENT = auto()
        ENDED = auto()


    video = SimpleVideo(self.video_id)
    video.set_step(video.get_fps())

    slides:list[VideoSlide] = []

    # We start looking for EduOpen
    # Then transit to content
    # Ending is optional (sometimes videos are cut)
    state_machine = {"state": list(State)[0]}
    next_state = { from_state:to_state for from_state, to_state in list(zip(list(State), list(State)[1:] + [None])) }
    prev_frame = ImageClassifier(video.get_frame())
    curr_frame = prev_frame.copy()
    speed_up_coef = 0.35
    fps = video.get_fps()
    max_speed = fps * 10
    curr_slide = None

    while True:

        # We have finished
        if not curr_frame.has_image():
            state_machine["state"] = State.ENDED

        curr_state = state_machine['state']

        # We are looking for the edu (o) pen word (the o is not recognized)
        if curr_state == State.WAITING_OPENING:
            if not curr_frame.is_same_image(prev_frame):
                text = curr_frame.extract_text(return_text=True)
                if "edu" in text and "pen" in text:
                    state_machine["state"] = next_state[curr_state]
                    video.set_step(video.get_fps())
            else:
                video.set_step(np.clip(int(video._curr_step+2), 1, video.get_fps()*2, dtype=int))

        # We are looking in a change in the text that won't have edu and open in the text
        elif curr_state == State.OPENING:
            text = curr_frame.extract_text(return_text=True)
            if not "edu" in text or not "pen" in text or len(text) > 8 :
                state_machine['state'] = next_state[curr_state]

        # We start processing slides reading the text at increasing video speed (capped at max speed) 
        # as we find same text in the image
        elif curr_state == State.CONTENT:
            texts_with_bb = curr_frame.extract_text(return_text=True, with_contours=True)

            # Found text
            if any(texts_with_bb):

                # Create new slide
                if curr_slide is None:
                    curr_slide = VideoSlide(texts_with_bb, (video.get_frame_index(), None))

                # Check if it's the same slide as the one cached
                else:
                    new_slide = VideoSlide(texts_with_bb, (video.get_frame_index(),None))

                    # If different append the previous slide setting it's end and reset the playback speed
                    if new_slide != curr_slide:
                        curr_slide.start_end_frames[-1] = (curr_slide.start_end_frames[-1][0], video.get_frame_index(True))
                        slides.append(curr_slide)
                        curr_slide = new_slide
                        video.set_step(video.get_fps()//2)

                    # If same slide increase playback speed
                    else:
                        video.set_step(int(np.clip(video._curr_step + speed_up_coef * max_speed, 0, max_speed)))

            # Not found text
            else:

                # If there is a slide save it, set it's end and reset playback speed
                if curr_slide is not None:
                    curr_slide.start_end_frames[-1] = (curr_slide.start_end_frames[-1][0], video.get_frame_index(True))
                    slides.append(curr_slide)
                    curr_slide = None
                    video.set_step(video.get_fps()//2)

        # If the last slide has not an end_frame because the video ended before, we assign last frame
        elif curr_state == State.ENDED:
            if curr_slide is not None and len(slides) and curr_slide != slides[-1]:
                curr_slide.start_end_frames[-1] = (curr_slide.start_end_frames[-1][0], video.get_frame_index(True))
                slides.append(curr_slide)
            break   

        prev_frame.set_img(curr_frame.get_img())
        curr_frame.set_img(video.get_frame())

        if _show_info: print(f"Doing {np.round((video._curr_frame_idx-video._curr_step)/video.get_count_frames()*100, 2)}%  curr step {video._curr_step} num slides {len(slides)}    ",end="\r")

    # Cleaning doubles
    # TODO need to implement method to remove gibberish
    txt_classif = TextSimilarityClassifier(comp_methods={ComparisonMethods.FUZZY_PARTIAL_RATIO, ComparisonMethods.CHARS_COMMON_DISTRIB})
    changed = True
    n_iter = 0
    while changed:
        changed = False
        for to_reverse in [False, True]:
            for slide1,slide2 in pairwise(slides, None_tail=False, reversed=to_reverse):
                if txt_classif.is_partially_in(slide1,slide2):
                    slide2:VideoSlide
                    slide2.merge_frames(slide1)
                    slides.remove(slide1)
                    changed = True
                n_iter += 1

        for slide1, slide2 in double_iterator(slides):
            if txt_classif.is_partially_in(slide2,slide1):
                slide1:VideoSlide
                slide1.merge_frames(slide2)
                slides.remove(slide2)
                changed = True
            n_iter += 1

    # Now correct slides offsets to the first and last frame they appear
    # TODO need to implement binary search because it's too slow
    if False:
        step = fps//5
        total = sum([len(slide.start_end_frames) for slide in slides])
        iter_ = 0
        print()
        for slide in slides:
            this_slide_text = slide._full_text
            for i, (start_frame, end_frame) in enumerate(slide.start_end_frames):

                # Shifting start frame backward
                video.rewind()
                video.roll(start_frame)
                video.set_step(-step)
                while True:
                    other_frame_text = curr_frame.set_img(video.get_frame()).extract_text(return_text=True)

                    if (i > 0 and slide.start_end_frames[i-1][1] >= start_frame-1) or \
                       (this_slide_text != other_frame_text and not slide.txt_sim_class.are_cosine_similar(this_slide_text, other_frame_text,confidence=0.4)):
                        start_frame += step
                        break

                    start_frame -= step

                # Shifting end frame forward
                video.rewind()
                video.roll(end_frame)
                video.set_step(step)
                while True:
                    other_frame_text = curr_frame.set_img(video.get_frame()).extract_text(return_text=True)

                    if (i+1 < len(slide.start_end_frames) and slide.start_end_frames[i+1][0] <= end_frame+1) or \
                       (this_slide_text != other_frame_text and not slide.txt_sim_class.are_cosine_similar(this_slide_text, other_frame_text,confidence=0.4)):
                        end_frame -= step
                        break

                    end_frame += step

                iter_ += 1
                print(f"At {iter_/total*100}%")
                # We reassign the frames
                slide.start_end_frames[i] = (start_frame, end_frame)

    # Convert into seconds
    for slide in slides:
        for i, (start_frame, end_frame) in enumerate(slide.start_end_frames):
            slide.start_end_frames[i] = (start_frame/fps, end_frame/fps)

    self.data["video_data"]["slides"] = [dict(tft) for tft in slides]

    mongo.insert_video_data(self.data)

create_thumbnails()

Create thumbnails of keyframes from slide segmentation

Source code in apps/annotator/code/media/segmentation.py
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
def create_thumbnails(self):
    '''
    Create thumbnails of keyframes from slide segmentation
    '''

    #times = self._slide_startends
    #if times is None:
    #    times = sorted(self.get_extracted_text(format='set[times]'))
    #else:
    #    times = sorted(times)

    images_path = []
    path = VIDEOS_PATH.joinpath(self.video_id) #os.path.dirname(os.path.abspath(__file__))
    if any(File.endswith(".jpg") for File in os.listdir(path)):
        for file in sorted(os.listdir(path)):
            if file.endswith(".jpg"):
                images_path.append(f"videos/{self.video_id}/{file}")
        self.images_path = images_path
        return

    times = self.data["video_data"]["segments"]
    video = LocalVideo(self.video_id)
    for i,(start_seconds,_) in enumerate(times):
        video.set_num_frame(video.get_num_frame_from_time(start_seconds+0.5))
        image = video.extract_next_frame()
        file_name = str(i) + ".jpg"
        image_file_dir = path.joinpath(file_name)
        cv2.imwrite(image_file_dir.__str__(), image)
        images_path.append(f"videos/{self.video_id}/{i}.jpg")

    self.images_path = images_path

download_video()

Downloads the video (expected YouTube video)

If the video has been removed from youtube, it attempts to remove the folder from both the drive and the database, then raises an Exception


NOTE

There are problems very often with YouTube, which breaks yt_dlp library.

In case of errors try to update the library

Source code in apps/annotator/code/media/segmentation.py
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
def download_video(self):
    '''
    Downloads the video (expected YouTube video)\n
    If the video has been removed from youtube, it attempts to remove the folder from both the drive and the database, then raises an Exception\n

    --------------
    # NOTE
    There are problems very often with YouTube, which breaks yt_dlp library.\n 
    In case of errors try to update the library
    '''
    url = self.url
    #video_link = url.split('&')[0]
    video_id = self.video_id
    folder_path = self.folder_path

    os.makedirs(folder_path, exist_ok=True)

    if os.path.isfile(os.path.join(folder_path,video_id+'.mp4')):
        return

    # Both pafy and pytube seems to be not mantained anymore, only youtube_dlp is still alive

    prev_cwd = os.getcwd()
    os.chdir(folder_path)

    try:
        #print("using ytdl")
        #yt_dlp.YoutubeDL({'format': 'bestvideo[height<=480]', 'quiet': True}).download([url])
        yt_dlp.YoutubeDL({  'quiet': False,
                            'format': 'bestvideo[height<=720]+bestaudio/best[height<=720]',
                            'outtmpl': video_id+'.mp4',
                            'merge_output_format': 'mp4',
                            'ffmpeg_location': '/usr/bin/ffmpeg',
                            'postprocessors': [{
                                'key': 'FFmpegVideoConvertor',
                                'preferedformat': 'mp4',  # Ensure the output is in mp4 format
                                }],
                              }).download([url])
    except Exception as e:
        print(e)

    os.chdir(prev_cwd)

    for file in os.listdir(folder_path):
        if file.endswith(".mp4"):
            os.rename(folder_path.joinpath(file),folder_path.joinpath(video_id+"."+file.split(".")[-1]))
            vidcap = cv2.VideoCapture(folder_path.joinpath(video_id+"."+file.split(".")[-1]))
            if not vidcap.isOpened() or not min((vidcap.get(cv2.CAP_PROP_FRAME_WIDTH),vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))) >= 360:
                raise Exception("Video does not have enough definition to find text")
            break
    if not os.path.isfile(folder_path.joinpath(video_id+".mp4")):
        raise Exception("Video has not been correctly downloaded")

extract_slides_title(quant=0.8, axis_for_outliers_detection='h', union=True, with_times=True)

Titles are extracted by performing statistics on the axis defined, computing a threshold based on quantiles

and merging results based on union of results or intersection

TODO improvements: now the analysis is performed on the whole list of sentences, but can be performed:

- per slide

- then overall

but i don't know if can be beneficial, depends on style of presentation. For now the assumption is that there's uniform text across all the slides and titles are generally bigger than the other text

Then titles are further more filtered by choosing that text whose size is above the threshold, only if it's the first sentence of the slide

Prerequisites :

Must have runned analyze_video()ffmpeg -i /home/gaggio/Documents/Research/ekeel/EVA_apps/EKEELVideoAnnotation/static/videos/lskmIRldsyU/lskmIRldsyU.mp4 -o /home/gaggio/Documents/Research/ekeel/EVA_apps/EKEELVideoAnnotation/static/videos/lskmIRldsyU/lskmIRldsyU.wav

Parameters :
  • quant : quantile as lower bound for outlier detection
  • axis_for_outliers_detection : axis considered for analysis are 'width' or 'height' or both
  • union : lastly it's perfomed a union of results (logical OR) or an intersection (logical AND)
  • with_times : if with_times returns a list of tuples(startend_frames, text, bounding_box) otherwise startend_frames are omitted
Returns :

List of all the detected titles

Source code in apps/annotator/code/media/segmentation.py
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
def extract_slides_title(self,quant:float=.8,axis_for_outliers_detection:Literal['w','h','wh']='h',union=True,with_times=True) -> list:
    """
    Titles are extracted by performing statistics on the axis defined, computing a threshold based on quantiles\n
    and merging results based on union of results or intersection\n
    #TODO improvements: now the analysis is performed on the whole list of sentences, but can be performed:\n
        - per slide\n
        - then overall\n
    but i don't know if can be beneficial, depends on style of presentation. 
    For now the assumption is that there's uniform text across all the slides and titles are generally bigger than the other text

    Then titles are further more filtered by choosing that text whose size is above the threshold, only if it's
    the first sentence of the slide\n

    Prerequisites :
    ------------
    Must have runned analyze_video()ffmpeg -i /home/gaggio/Documents/Research/ekeel/EVA_apps/EKEELVideoAnnotation/static/videos/lskmIRldsyU/lskmIRldsyU.mp4 -o /home/gaggio/Documents/Research/ekeel/EVA_apps/EKEELVideoAnnotation/static/videos/lskmIRldsyU/lskmIRldsyU.wav

    Parameters :
    ----------
    - quant : quantile as lower bound for outlier detection
    - axis_for_outliers_detection : axis considered for analysis are 'width' or 'height' or both 
    - union : lastly it's perfomed a union of results (logical OR) or an intersection (logical AND)
    - with_times : if with_times returns a list of tuples(startend_frames, text, bounding_box)
            otherwise startend_frames are omitted

    Returns :
    ---------
    List of all the detected titles
    """
    assert axis_for_outliers_detection in {'w','h','wh'} and 0 < quant < 1 and self.get_extracted_text(format='list[text,time,box]') is not None
    # convert input into columns slice for analysis
    sliced_columns = {'w':slice(2,3),'h':slice(3,4),'wh':slice(2,4)}[axis_for_outliers_detection]
    texts_with_bb = self.get_extracted_text(format='list[text,time,box]')

    # select columns
    axis_array = array([text_with_bb[2][sliced_columns] for text_with_bb in texts_with_bb],dtype=dtype('float','float'))

    # compute statistical analysis on columns
    indices_above_threshold = list(where((axis_array > quantile(axis_array,quant,axis=0)).any(axis=1))[0]) if union else \
                              list(where((axis_array > quantile(axis_array,quant,axis=0)).all(axis=1))[0])

    slides_group = []
    # group by slide
    # x[0] is one element of indices_above_threshold to compare, x[1] is another
    # [1] accesses the startend seconds of that VideoSlide  [text, startend, bounding_boxes]
    # [0] picks the start second of that object [start_second, end_second]
    for _,g in groupby(enumerate(indices_above_threshold),lambda x: texts_with_bb[x[0]][1][0] - texts_with_bb[x[1]][1][0]):
        slides_group.append(list(reversed(list(map(lambda x:x[1], g)))))
    slides_group = list(reversed(slides_group))

    # remove indices of text that are classified as titles but are just big text that's not at the top of every slide
    for group in slides_group:
        for indx_text in group:
            if indx_text > 0 and indx_text-1 not in group and (                        # if i'm not at the first index and the text of the previous index is not in the group
               texts_with_bb[indx_text-1][1][0] == texts_with_bb[indx_text][1][0] and  # and the text is in the same slide
               texts_with_bb[indx_text-1][2][1] < texts_with_bb[indx_text][2][1]):     # and has a y value lower than my current text (there's another sentence before this one)
                indices_above_threshold.remove(indx_text)

    # selects the texts from the list of texts
    if len(indices_above_threshold) == 0:
        return None

    if not with_times:
        if len(indices_above_threshold) > 1:
            return itemgetter(*indices_above_threshold)(list(zip(*list(zip(*texts_with_bb))[0:3:2])))
        return [itemgetter(*indices_above_threshold)(list(zip(*list(zip(*texts_with_bb))[0:3:2])))]
    if len(indices_above_threshold) > 1:
        return itemgetter(*indices_above_threshold)(texts_with_bb)
    return [itemgetter(*indices_above_threshold)(texts_with_bb)]

extract_video_id(url) staticmethod

From a YouTube url extracts the video id

Source code in apps/annotator/code/media/segmentation.py
125
126
127
128
129
130
131
132
133
@staticmethod
def extract_video_id(url:str):
    '''
    From a YouTube url extracts the video id
    '''
    video_link = url.split('&')[0]
    if '=' in video_link:
        return video_link.split('=')[-1]
    return video_link.split('/')[-1]

get_extracted_text(format='list')

Returns the text extracted from the video.

Text can be cleaned from non-alphanumeric characters or not.

Parameters :
  • format (str): The desired format of the output. Defaults to 'list[text_id, timed-tuple]'.

    • 'str': single string with the text joined together.

    • 'list': list of VideoSlides

    • 'set[times] : list of unique texts' times (in seconds) (used for creation of thumbnails)

    • 'list[time,list[text,box]]': a list of (times, list of (sentence, bounding-box))
    • 'list[text,box]': list of texts with bounding boxes
    • 'list[id,text,box]': list of tuple of id, text, and bounding boxes
    • 'list[text,time,box]': list of repeated times (in seconds) for every text_bounding_boxed
    • 'list[tuple(id,timed-text)]': list of tuples made of (startend times in seconds, text as string present in those frames)
Source code in apps/annotator/code/media/segmentation.py
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
def get_extracted_text(self,format:Literal['str','list','list[text,box]','set[times]','list[text,time,box]','list[time,list[text,box]]','list[id,text,box]']='list'): 
    """
    Returns the text extracted from the video.\n
    Text can be cleaned from non-alphanumeric characters or not.

    Parameters :
    ------------
    - format (str): The desired format of the output. Defaults to 'list[text_id, timed-tuple]'.
        - 'str': single string with the text joined together.\n
        - 'list': list of VideoSlides\n
        - 'set[times] : list of unique texts' times (in seconds) (used for creation of thumbnails)
        - 'list[time,list[text,box]]': a list of (times, list of (sentence, bounding-box))
        - 'list[text,box]': list of texts with bounding boxes
        - 'list[id,text,box]': list of tuple of id, text, and bounding boxes
        - 'list[text,time,box]': list of repeated times (in seconds) for every text_bounding_boxed
        - 'list[tuple(id,timed-text)]': list of tuples made of (startend times in seconds, text as string present in those frames)
    """
    if self._text_in_video is None:
        return None
    if format=='list':
        return self._text_in_video
    elif format=='str':
        return ' '.join([tft.get_full_text() for tft in self._text_in_video])
    elif format=='set[times]':
        out = []
        video = LocalVideo(self.video_id)
        for tft in self._text_in_video:
            out.extend([(video.get_time_from_num_frame(st_en_frames[0]),video.get_time_from_num_frame(st_en_frames[1])) for st_en_frames in tft.start_end_frames])
        return out
    elif format=='list[text,box]':
        out_lst = []
        for tft in self._text_in_video:
            out_lst.extend(tft.get_framed_sentences())
        return out_lst
    elif format=='list[id,text,box]':
        timed_text_with_bb = []
        _id = 0
        for tft in self._text_in_video:
            for sentence,bb in tft.get_framed_sentences():
                timed_text_with_bb.append((_id,sentence,bb))
                _id +=1
        return timed_text_with_bb
    elif format=='list[text,time,box]':
        timed_text_with_bb = []
        video = LocalVideo(self.video_id)
        for tft in self._text_in_video:
            st_en_frames = tft.start_end_frames[0]
            for sentence,bb in tft.get_framed_sentences():
                timed_text_with_bb.append((sentence.strip('\n'),(video.get_time_from_num_frame(st_en_frames[0]),video.get_time_from_num_frame(st_en_frames[1])),bb))
        return timed_text_with_bb
    elif format=='list[time,list[text,box]]':
        video = LocalVideo(self.video_id)
        timed_text = []
        texts = self._text_in_video
        for tft in texts:
            for startend in tft.start_end_frames:
                insort_left(timed_text,((video.get_time_from_num_frame(startend[0]),video.get_time_from_num_frame(startend[1])), tft.get_full_text()))
        return timed_text
    elif format=='list[tuple(id,timed-text)]':
        video = LocalVideo(self.video_id)
        return [(id,(video.get_time_from_num_frame(startend[0]),video.get_time_from_num_frame(startend[1])), tft.get_full_text()) 
                        for id, tft in enumerate(self._text_in_video) 
                        for startend in tft.start_end_frames]

identify_language(format='pt1')

Recognizes the video language (currently implemented ita and eng so it raises exception if not one of these)

Source code in apps/annotator/code/media/segmentation.py
732
733
734
735
736
737
738
739
740
741
742
def identify_language(self, format:Literal['full','pt1']='pt1') -> str:
    '''
    Recognizes the video language (currently implemented ita and eng so it raises exception if not one of these)
    '''
    if not 'language' in self.data.keys():
        self.data['language'] = list(YTTranscriptApi.list_transcripts(self.video_id)._generated_transcripts.keys())[0] 

    locale = Locale()
    if not locale.is_language_supported(self.data['language']):
        raise Exception(f"Language is not between supported ones: {locale.get_supported_languages()}")
    return self.data['language'] if format =='pt1' else locale.get_full_from_pt1(self.data['language'])

is_slide_video(slide_frames_percent_threshold=0.5, _show_info=True)

Computes a threshold against a value that can be calculated or passed as precomputed_value

Returns:

Type Description
value and slide frames if return value is True
else
True and slide frames if percentage of recognized slidish frames is above the threshold
Source code in apps/annotator/code/media/segmentation.py
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
def is_slide_video(self,slide_frames_percent_threshold:float=0.5,_show_info=True):
    '''
    Computes a threshold against a value that can be calculated or passed as precomputed_value

    Returns
    -------
    value and slide frames if return value is True\n
    else\n
    True and slide frames if percentage of recognized slidish frames is above the threshold
    '''
    if not "slides_percentage" in self.data["video_data"].keys():
        print(self.data["video_data"])
        self._preprocess_video(vsm=VideoSpeedManager(self.video_id,COLOR_RGB),_show_info=_show_info)
        mongo.insert_video_data(self.data)
    return self.data["video_data"]['slides_percentage'] > slide_frames_percent_threshold

request_transcript()

Downloads the transcript associated with the video and returns also whether the transcript is automatically or manually generated

Preferred manually generated

Whisper transcription is implemented in transcribe.py called as external service and will replace youtube transcript for word level precision

Source code in apps/annotator/code/media/segmentation.py
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
def request_transcript(self):
    '''
    Downloads the transcript associated with the video and returns also whether the transcript is automatically or manually generated \n
    Preferred manually generated \n
    Whisper transcription is implemented in transcribe.py called as external service and will replace youtube transcript for word level precision\n
    '''

    if "transcript_data" in self.data.keys():
        return

    # moved as external service
    #if extract_from_audio:
    #    self.data["transcript_data"] = {"text": WhisperTranscriber.transcribe(self.video_id,language), 
    #                                    "is_autogenerated": True,
    #                                    "is_whisper_transcribed": True }
    #    mongo.insert_video_data(self.data)
    #    return


    language = self.identify_language() 
    self.data["transcript_data"] = {"is_whisper_transcribed": False}

    transcripts = YTTranscriptApi.list_transcripts(self.video_id)
    transcript:Transcript
    try:
        transcript = transcripts.find_manually_created_transcript([language])
        self.data["transcript_data"]["is_autogenerated"] = False
    except:
        transcript = transcripts.find_generated_transcript([language])
        self.data["transcript_data"]["is_autogenerated"] = True

    subs_dict = transcript.fetch()
    for sub in subs_dict: sub["end"] = sub["start"] + sub.pop("duration")

    timed_subtitles = []
    for entry in subs_dict:
        if not "[" in entry["text"]:
            word = {"word":"",
                    "start":entry["start"],
                    "end": entry["end"]}
            words = []
            for word_text in entry["text"].split(" "):
                apostrophed_words = word_text.split("'")
                if len(apostrophed_words) > 1:
                    word = word.copy()
                    word["word"] = apostrophed_words[0]+"'"
                    words.append(word)
                if len(apostrophed_words[-1]):
                    word = word.copy()
                    word["word"] = apostrophed_words[-1]
                    words.append(word)
            segment = {'text': entry["text"], 
                       'start': entry['start'],
                       'end': entry['end'],
                       'words': words }
            timed_subtitles.append(segment)
    self.data["transcript_data"]["text"] = timed_subtitles 

    mongo.insert_video_data(self.data)

transcript_segmentation(c_threshold=0.22, sec_min=35, S=1, frame_range=15, create_thumbnails=True)

:param c_threshold: threshold per la similarità tra frasi :param sec_min: se un segmento è minore di sec_min verrà unito con il successivo :param S: scala per color histogram :param frame_range: aggiustare inizio e fine dei segmenti in base a differenza nel color histogram nel frame_range :return: segments

Source code in apps/annotator/code/media/segmentation.py
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
    def transcript_segmentation(self, c_threshold=0.22, sec_min=35, S=1, frame_range=15, create_thumbnails=True):
        """
        :param c_threshold: threshold per la similarità tra frasi
        :param sec_min: se un segmento è minore di sec_min verrà unito con il successivo
        :param S: scala per color histogram
        :param frame_range: aggiustare inizio e fine dei segmenti in base a differenza nel color histogram nel frame_range
        :return: segments
        """
        if "video_data" in self.data.keys() and "segments" in self.data["video_data"].keys():
            return 
        video_id = self.video_id
        language = self.identify_language()

        # get punctuated transcription from the conll in the db
        #transcription:str = get_text(video_id)
        #if transcription is None:
        #    if self.timed_subtitles is None:
        #        self.request_transcript()
#
        #    '''Get the transcription from the subtitles'''
        #    transcription:str = " ".join([sub["text"] for sub in self.timed_subtitles["text"]])
        #    if language == Locale().get_pt1_from_full('English'):
        #        transcription:str = transcription.replace('\n', ' ').replace(">>", "") \
        #                                         .replace("Dr.","Dr").replace("dr.","dr") \
        #                                         .replace("Mr.","Mr").replace("mr.","mr")
        #print("Checking punctuation...")
        semantic_transcript = SemanticText(" ".join(timed_sentence["text"] for timed_sentence in self.data["transcript_data"]["text"] if not "[" in timed_sentence['text']),language)

        #video = mongo.get_video(video_id)

        '''Divide into sentences the punctuated transcription'''
        print("Extracting sentences..")
        sentences = [sent.replace(" ,",",").replace(" .",".") for sent in semantic_transcript.tokenize()]

        '''For each sentence, add its start and end time obtained from the subtitles'''
        timed_sentences = get_timed_sentences(self.data["transcript_data"]["text"], sentences)

        '''Define the BERT model for similarity'''
        print("Creating embeddings..")
        #model = SentenceTransformer('paraphrase-distilroberta-base-v1')
        #model = SentenceTransformer('stsb-roberta-large')

        '''Compute a vector of numbers (the embedding) to idenfity each sentence'''
        #embeddings = model.encode(sentences, convert_to_tensor=True)
        # All moved inside semantic transcript class
        embeddings = semantic_transcript.get_embeddings()

        '''Create clusters based on semantic textual similarity, using the BERT embeddings'''
        print("Creating initials segments..")
        clusters = create_cluster_list(timed_sentences, embeddings, c_threshold)


        '''Aggregate togheter clusters shorter than 40 seconds in total'''
        refined_clusters = aggregate_short_clusters(clusters, sec_min)

        start_times = []
        end_times = []

        '''Print the final result'''
        for c in refined_clusters:
            start_times.append(c.start_time)
            end_times.append(c.end_time)
        self.data["video_data"] = {"segments": list(zip(start_times, end_times))}
        mongo.insert_video_data(self.data)


        print("Reached the part of finding clusters")

        '''Find and append to each cluster the 2 most relevant sentences'''
        #num_sentences = 2
        #sumy_summary(refined_clusters, num_sentences)
        #self.transcript = semantic_transcript


        '''Adjust end and start time of each cluster based on detected scene changes'''
        #path = Path(__file__).parent.joinpath("static", "videos", video_id)
        #if not create_thumbnails:
        #    self.data["video_data"]['segments'] = self._create_keyframes(start_times, end_times, S, frame_range, create_thumbnails=False)
        #    return
#
        #if not any(File.endswith(".jpg") for File in os.listdir(path)):
        #    self.data["video_data"]['segments'] = self._create_keyframes(start_times, end_times, S, frame_range)
        #else:
        #    print("keyframes already present")
        #    images = []
        #    for File in os.listdir(path):
        #        if File.endswith(".jpg"):
        #            images.append(File.split(".")[0])
        #    images.sort(key=int)
        #    self.images_path = ["videos/" + video_id + "/" + im + ".jpg" for im in images]
        return