Skip to content

Analysis


Analysis module for concept maps and annotations.

This module provides comprehensive functionality for analyzing concept maps, including statistical analysis, agreement computation between annotators, and linguistic analysis of annotations. It includes tools for:

  • Computing summary statistics of concept maps
  • Calculating inter-annotator agreement metrics
  • Performing linguistic analysis on annotations
  • Detecting transitive relationships
  • Evaluating annotations against gold standards
  • Graph-based analysis of concept relationships

Functions:

Name Description
compute_data_summary

Generate statistical summary of concept maps and definitions

compute_agreement

Calculate agreement between two concept maps

fleiss

Compute Fleiss' kappa for multiple annotators

linguistic_analysis

Analyze linguistic properties of annotations

detect_transitive_edges

Find transitive relations in concept maps

scores

Calculate evaluation metrics against gold standard

BFS

Perform breadth-first search on concept relationships

Classes:

Name Description
Graph

Simple directed graph implementation using adjacency lists

Graph

A simple graph implementation using adjacency lists.

Attributes:

Name Type Description
graph dict

Dictionary storing adjacency lists for each node

nodes list

List of all nodes in the graph

Methods:

Name Description
add_edge

Add a directed edge from node u to node v

Source code in apps/annotator/code/metrics/analysis.py
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
class Graph:
    """
    A simple graph implementation using adjacency lists.

    Attributes
    ----------
    graph : dict
        Dictionary storing adjacency lists for each node
    nodes : list
        List of all nodes in the graph

    Methods
    -------
    add_edge(u, v)
        Add a directed edge from node u to node v
    """
    def __init__(self):
        self.graph = {}
        self.nodes = []

    def add_edge(self, u, v):

        if u not in self.nodes:
            self.nodes.append(u)
            self.graph[u] = []

        if v not in self.nodes:
            self.nodes.append(v)
            self.graph[v] = []

        self.graph[u].append(v)

BFS(from_, to_, relations, cut=None)

Perform breadth-first search on concept map relationships.

Parameters:

Name Type Description Default
from_ str

Starting concept

required
to_ str

Target concept

required
relations list

List of concept map relationships

required
cut int

Maximum search depth

None

Returns:

Type Description
bool

True if path exists between concepts, False otherwise

Source code in apps/annotator/code/metrics/analysis.py
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
def BFS(from_, to_, relations, cut=None):
    """
    Perform breadth-first search on concept map relationships.

    Parameters
    ----------
    from_ : str
        Starting concept
    to_ : str
        Target concept
    relations : list
        List of concept map relationships
    cut : int, optional
        Maximum search depth

    Returns
    -------
    bool
        True if path exists between concepts, False otherwise
    """
    """
    Breath First Search in concept map
    """

    queue = [from_]
    already_visited = [from_]
    count = 0

    targets = {}

    for rel in relations:
        if rel["prerequisite"] not in targets:
            targets[rel["prerequisite"]] = []

        targets[rel["prerequisite"]].append(rel["target"])


    while len(queue) > 0:

        if cut is not None:
            if count > cut:
                return False
            count += 1

        curr = queue.pop()
        if curr in targets:
            next_level = targets[curr]
        else:
            next_level = []

        if to_ in next_level:
            return True
        else:
            for i in range(0, len(next_level)):
                if next_level[i] not in already_visited:
                    queue.append(next_level[i])
                    already_visited.append(next_level[i])

    # not found
    return False

compute_agreement(concept_map1, concept_map2)

Compute agreement statistics between two concept maps.

Parameters:

Name Type Description Default
concept_map1 list

First concept map relationships

required
concept_map2 list

Second concept map relationships

required

Returns:

Type Description
dict

Agreement statistics including kappa coefficient

Source code in apps/annotator/code/metrics/analysis.py
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
def compute_agreement(concept_map1, concept_map2):
    """
    Compute agreement statistics between two concept maps.

    Parameters
    ----------
    concept_map1 : list
        First concept map relationships
    concept_map2 : list
        Second concept map relationships

    Returns
    -------
    dict
        Agreement statistics including kappa coefficient
    """
    # concept_map1 = db_mongo.get_concept_map(user1, video)
    # concept_map2 = db_mongo.get_concept_map(user2, video)
    words = []
    user1 = "first"
    user2 = "second"

    for rel in concept_map1:
        if rel["prerequisite"] not in words:
            words.append(rel["prerequisite"])

        if rel["target"] not in words:
            words.append(rel["target"])

    for rel in concept_map2:
        if rel["prerequisite"] not in words:
            words.append(rel["prerequisite"])

        if rel["target"] not in words:
            words.append(rel["target"])

    all_combs = agreement.createAllComb(words)

    # Calcolo agreement kappa no-inv all paths
    term_pairs = {user1: [], user2: []}
    term_pairs_tuple = {user1: [], user2: []}
    term_pairs[user1], all_combs, term_pairs_tuple[user1] = agreement.createUserRel(concept_map1, all_combs)
    term_pairs[user2], all_combs, term_pairs_tuple[user2] = agreement.createUserRel(concept_map2, all_combs)

    coppieannotate, conteggio = agreement.creaCoppieAnnot(user1, user2, term_pairs, all_combs, term_pairs_tuple)


    results = {"analysis_type": "agreement", "agreement":round(agreement.computeK(conteggio, all_combs), 3) if len(all_combs) else 0}

    return results

compute_data_summary(video_id, concept_map, definitions)

Compute summary statistics for a concept map and its definitions.

Parameters:

Name Type Description Default
video_id str

Identifier of the video

required
concept_map list

List of concept map relationships

required
definitions list

List of concept definitions

required

Returns:

Type Description
dict

Summary statistics including counts of relations, concepts and descriptions

Source code in apps/annotator/code/metrics/analysis.py
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
def compute_data_summary(video_id, concept_map, definitions):
    """
    Compute summary statistics for a concept map and its definitions.

    Parameters
    ----------
    video_id : str
        Identifier of the video
    concept_map : list
        List of concept map relationships
    definitions : list
        List of concept definitions

    Returns
    -------
    dict
        Summary statistics including counts of relations, concepts and descriptions
    """
    unique_relations = []
    strong_relations = []
    weak_relations = []
    concepts = []

    G = nx.DiGraph()

    for rel in concept_map:

        G.add_edge(rel["prerequisite"], rel["target"])

        r = {"prerequisite":rel["prerequisite"], "target": rel["target"]}

        if r not in unique_relations:
            unique_relations.append(r)

        if rel["weight"] == "Strong":
            strong_relations.append(rel)
        else:
            weak_relations.append(rel)

        if rel["prerequisite"] not in concepts:
            concepts.append(rel["prerequisite"])

        if rel["target"] not in concepts:
            concepts.append(rel["target"])

    defs = 0
    depth = 0
    for d in definitions:
        if d["concept"] not in concepts:
            concepts.append(d["concept"])

        if d["description_type"] == "Definition":
            defs += 1
        else:
            depth += 1

    results = {"analysis_type": "data_summary", "concept_map": concept_map,
               "num_rels": len(concept_map), "num_weak": len(weak_relations),"num_strong": len(strong_relations),
               "num_unique": len(unique_relations), "num_descriptions":len(definitions), "num_definitions":defs,
               "num_depth":depth, "num_concepts": len(concepts),
               "num_transitives": len(detect_transitive_edges(G,10))}

    return results

detect_transitive_edges(graph, cutoff)

Detect transitive relations in a concept map graph.

Parameters:

Name Type Description Default
graph DiGraph

Directed graph representing concept map

required
cutoff int

Maximum path length to consider

required

Returns:

Type Description
list

List of tuples containing transitive edges

Source code in apps/annotator/code/metrics/analysis.py
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
def detect_transitive_edges(graph, cutoff):
    """
    Detect transitive relations in a concept map graph.

    Parameters
    ----------
    graph : networkx.DiGraph
        Directed graph representing concept map
    cutoff : int
        Maximum path length to consider

    Returns
    -------
    list
        List of tuples containing transitive edges
    """

    transitives = []

    for source_node in graph.nodes():
        other_nodes = list(graph.nodes())
        other_nodes.remove(source_node)

        for target_node in other_nodes:
            paths = nx.all_simple_paths(graph, source_node, target_node, cutoff)

            for path in paths:
                if len(path) > 2 and graph.has_edge(source_node, target_node):
                    if (source_node, target_node) not in transitives:
                        transitives.append((source_node, target_node))

    return transitives

fleiss(video_id)

Compute Fleiss' kappa for multiple annotators.

Parameters:

Name Type Description Default
video_id str

Identifier of the video

required

Returns:

Type Description
float

Fleiss' kappa coefficient rounded to 3 decimal places

Source code in apps/annotator/code/metrics/analysis.py
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
def fleiss(video_id):
    """
    Compute Fleiss' kappa for multiple annotators.

    Parameters
    ----------
    video_id : str
        Identifier of the video

    Returns
    -------
    float
        Fleiss' kappa coefficient rounded to 3 decimal places
    """
    users = mongo.get_graphs_info(video_id)["annotators"]

    words = []
    concept_maps = {}
    for user in users:
        concept_map = mongo.get_concept_map(user["id"], video_id)
        for rel in concept_map:
            if rel["prerequisite"] not in words:
                words.append(rel["prerequisite"])

            if rel["target"] not in words:
                words.append(rel["target"])

        concept_maps[user["id"]] = concept_map

    all_combs = agreement.createAllComb(words)

    term_pairs = {}
    for id in concept_maps:
        term_pairs[id] = agreement.createUserRel(concept_maps[id], all_combs)[0]

    try:
        fleiss = agreement.computeFleiss(term_pairs, all_combs)
    except:
        fleiss = 1

    return round(fleiss, 3)

linguistic_analysis(annotator, video_id)

Perform linguistic analysis on annotated concept maps.

Parameters:

Name Type Description Default
annotator str

Identifier of the annotator

required
video_id str

Identifier of the video

required

Returns:

Type Description
dict

Linguistic analysis results including concepts, sentences and CoNLL data

Source code in apps/annotator/code/metrics/analysis.py
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
def linguistic_analysis(annotator, video_id):
    """
    Perform linguistic analysis on annotated concept maps.

    Parameters
    ----------
    annotator : str
        Identifier of the annotator
    video_id : str
        Identifier of the video

    Returns
    -------
    dict
        Linguistic analysis results including concepts, sentences and CoNLL data
    """
    concept_map = mongo.get_concept_map(annotator, video_id)

    conll = mongo.get_conll(video_id)
    #print(conll)
    parsed_conll = parse(conll)

    sent_list = []
    processed_conll = []

    for sent in parsed_conll:
        sent_list.append(sent.metadata["text"])

        for word in sent:
            data = {}
            data['tok_id'] = word["id"]
            data['sent_id'] = sent.metadata["sent_id"]
            data['forma'] = word["form"]
            data['lemma'] = word["lemma"]
            data['pos_coarse'] = word["upos"]
            data['pos_fine'] = word["xpos"]

            processed_conll.append(data)

    concepts = []

    for rel in concept_map:
        rel["sentence"] = parsed_conll[int(rel["sent_id"])-1].metadata["text"]
        if rel["prerequisite"] not in concepts:
            concepts.append(rel["prerequisite"])

        if rel["target"] not in concepts:
            concepts.append(rel["target"])


    results = {"analysis_type": "linguistic","concept_map": concept_map, "concepts": concepts, "sentences": sent_list,
               "conll": processed_conll}

    return results

scores(annotation, annotation_gold, concepts)

Calculate evaluation metrics comparing annotation to gold standard.

Parameters:

Name Type Description Default
annotation list

Concept map relationships from annotator

required
annotation_gold list

Gold standard concept map relationships

required
concepts list

List of all concepts

required

Returns:

Type Description
tuple

(accuracy, precision, recall, f1_score) rounded to 3 decimal places

Source code in apps/annotator/code/metrics/analysis.py
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
def scores(annotation, annotation_gold, concepts):
    """
    Calculate evaluation metrics comparing annotation to gold standard.

    Parameters
    ----------
    annotation : list
        Concept map relationships from annotator
    annotation_gold : list
        Gold standard concept map relationships
    concepts : list
        List of all concepts

    Returns
    -------
    tuple
        (accuracy, precision, recall, f1_score) rounded to 3 decimal places
    """
    TP = 0
    TN = 0
    FP = 0
    FN = 0

    paths_gold = []
    paths_ann = []
    negative_relations = []

    G_ann = nx.DiGraph()
    G_gold = nx.DiGraph()

    for rel in annotation:

        rel["prerequisite"] = rel["prerequisite"].replace("-", " ")
        rel["target"] = rel["target"].replace("-", " ")

        G_ann.add_edge(rel["prerequisite"], rel["target"])

    for rel in annotation_gold:

        rel["prerequisite"] = rel["prerequisite"].replace("-", " ")
        rel["target"] = rel["target"].replace("-", " ")

        G_gold.add_edge(rel["prerequisite"], rel["target"])


    for c1 in concepts:
        for c2 in concepts:
            # se esiste un percorso tra due concetti
            if c1 in G_gold and c2 in G_gold and nx.has_path(G_gold, c1, c2): #BFS(c1, c2, annotation_gold, cut=300):
                paths_gold.append((c1, c2))
            else:
                negative_relations.append((c1, c2))

            if c1 in G_ann and c2 in G_ann and nx.has_path(G_ann, c1, c2): #BFS(c1, c2, annotation, cut=300):
                paths_ann.append((c1, c2))

    for r in paths_gold:
        if r in paths_ann:
            TP += 1
        else:
            FN += 1

    for r in paths_ann:
        if r not in paths_gold:
            FP += 1

    for r in random.sample(negative_relations, len(paths_gold)):
        if r not in paths_ann:
            TN += 1


    accuracy = (TP + TN) / (TP + TN + FP + FN)

    if TP + FP != 0:
        precision = TP / (TP + FP)
    else:
        precision = 0

    if TP + FN != 0:
        recall = TP / (TP + FN)
    else:
        recall = 0

    if precision != 0 or recall != 0:
        F1 = 2 * (precision * recall) / (precision + recall)
    else:
        F1 = 0.0

    return round(accuracy, 3), round(precision, 3), round(recall, 3), round(F1, 3)