Analysis
Analysis module for concept maps and annotations.
This module provides comprehensive functionality for analyzing concept maps, including statistical analysis, agreement computation between annotators, and linguistic analysis of annotations. It includes tools for:
- Computing summary statistics of concept maps
- Calculating inter-annotator agreement metrics
- Performing linguistic analysis on annotations
- Detecting transitive relationships
- Evaluating annotations against gold standards
- Graph-based analysis of concept relationships
Functions:
Name | Description |
---|---|
compute_data_summary |
Generate statistical summary of concept maps and definitions |
compute_agreement |
Calculate agreement between two concept maps |
fleiss |
Compute Fleiss' kappa for multiple annotators |
linguistic_analysis |
Analyze linguistic properties of annotations |
detect_transitive_edges |
Find transitive relations in concept maps |
scores |
Calculate evaluation metrics against gold standard |
BFS |
Perform breadth-first search on concept relationships |
Classes:
Name | Description |
---|---|
Graph |
Simple directed graph implementation using adjacency lists |
Graph
A simple graph implementation using adjacency lists.
Attributes:
Name | Type | Description |
---|---|---|
graph |
dict
|
Dictionary storing adjacency lists for each node |
nodes |
list
|
List of all nodes in the graph |
Methods:
Name | Description |
---|---|
add_edge |
Add a directed edge from node u to node v |
Source code in apps/annotator/code/metrics/analysis.py
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
|
BFS(from_, to_, relations, cut=None)
Perform breadth-first search on concept map relationships.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
from_
|
str
|
Starting concept |
required |
to_
|
str
|
Target concept |
required |
relations
|
list
|
List of concept map relationships |
required |
cut
|
int
|
Maximum search depth |
None
|
Returns:
Type | Description |
---|---|
bool
|
True if path exists between concepts, False otherwise |
Source code in apps/annotator/code/metrics/analysis.py
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
|
compute_agreement(concept_map1, concept_map2)
Compute agreement statistics between two concept maps.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
concept_map1
|
list
|
First concept map relationships |
required |
concept_map2
|
list
|
Second concept map relationships |
required |
Returns:
Type | Description |
---|---|
dict
|
Agreement statistics including kappa coefficient |
Source code in apps/annotator/code/metrics/analysis.py
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
|
compute_data_summary(video_id, concept_map, definitions)
Compute summary statistics for a concept map and its definitions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
video_id
|
str
|
Identifier of the video |
required |
concept_map
|
list
|
List of concept map relationships |
required |
definitions
|
list
|
List of concept definitions |
required |
Returns:
Type | Description |
---|---|
dict
|
Summary statistics including counts of relations, concepts and descriptions |
Source code in apps/annotator/code/metrics/analysis.py
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
|
detect_transitive_edges(graph, cutoff)
Detect transitive relations in a concept map graph.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
graph
|
DiGraph
|
Directed graph representing concept map |
required |
cutoff
|
int
|
Maximum path length to consider |
required |
Returns:
Type | Description |
---|---|
list
|
List of tuples containing transitive edges |
Source code in apps/annotator/code/metrics/analysis.py
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
|
fleiss(video_id)
Compute Fleiss' kappa for multiple annotators.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
video_id
|
str
|
Identifier of the video |
required |
Returns:
Type | Description |
---|---|
float
|
Fleiss' kappa coefficient rounded to 3 decimal places |
Source code in apps/annotator/code/metrics/analysis.py
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
|
linguistic_analysis(annotator, video_id)
Perform linguistic analysis on annotated concept maps.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
annotator
|
str
|
Identifier of the annotator |
required |
video_id
|
str
|
Identifier of the video |
required |
Returns:
Type | Description |
---|---|
dict
|
Linguistic analysis results including concepts, sentences and CoNLL data |
Source code in apps/annotator/code/metrics/analysis.py
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
|
scores(annotation, annotation_gold, concepts)
Calculate evaluation metrics comparing annotation to gold standard.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
annotation
|
list
|
Concept map relationships from annotator |
required |
annotation_gold
|
list
|
Gold standard concept map relationships |
required |
concepts
|
list
|
List of all concepts |
required |
Returns:
Type | Description |
---|---|
tuple
|
(accuracy, precision, recall, f1_score) rounded to 3 decimal places |
Source code in apps/annotator/code/metrics/analysis.py
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
|