Xgboost Adapter
This module provides an adapter for the XGBoost pretrained model used for lecture type detection and text recognition.
Classes:
Name | Description |
---|---|
XGBoostModelAdapter |
Model adapter for the XGBoost pretrained model |
XGBoostModelAdapter
Model adapter for the XGBoost pretrained model from the misc/lecture type detection and text recognition folder.
Attributes:
Name | Type | Description |
---|---|---|
_labels |
dict
|
A dictionary mapping label indices to their corresponding names. |
Methods:
Name | Description |
---|---|
__init__ |
Initializes the model adapter with the given model path. |
_extract_faces_info |
Extracts face information from the current image. |
_extract_features_from_image |
Extracts features from the given image. |
predict_probability |
Predicts the probability distribution over classes for the given image. |
predict_max_confidence |
Predicts the class with the highest confidence for the given image. |
get_label |
Gets the label corresponding to the given prediction. |
is_enough_slidish_like |
Predicts if the image is likely to be a slide with a small margin of confidence. |
Source code in apps/annotator/code/models/xgboost_adapter.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
|
__init__(model_path)
Initializes the model adapter with the given model path.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_path
|
str
|
The path to the pretrained XGBoost model. |
required |
Source code in apps/annotator/code/models/xgboost_adapter.py
46 47 48 49 50 51 52 53 54 55 56 57 58 |
|
get_label(prediction)
Gets the label corresponding to the given prediction.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
prediction
|
int or ndarray
|
The prediction index or probability distribution. |
required |
Returns:
Name | Type | Description |
---|---|---|
label |
str or dict
|
The label corresponding to the prediction index or a dictionary of labels with their probabilities. |
Source code in apps/annotator/code/models/xgboost_adapter.py
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
|
is_enough_slidish_like(image)
Predicts if the image is likely to be a slide with a small margin of confidence.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
image
|
ImageClassifier
|
The image classifier object. |
required |
Returns:
Name | Type | Description |
---|---|---|
is_slidish |
bool
|
True if the image is likely to be a slide, False otherwise. |
Source code in apps/annotator/code/models/xgboost_adapter.py
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
|
predict_max_confidence(image)
Predicts the class with the highest confidence for the given image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
image
|
ImageClassifier
|
The image classifier object. |
required |
Returns:
Name | Type | Description |
---|---|---|
prediction |
int
|
The class index with the highest confidence. |
Source code in apps/annotator/code/models/xgboost_adapter.py
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
|
predict_probability(image)
Predicts the probability distribution over classes for the given image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
image
|
ImageClassifier
|
The image classifier object. |
required |
Returns:
Name | Type | Description |
---|---|---|
probs |
ndarray
|
The probability distribution over classes. |
Source code in apps/annotator/code/models/xgboost_adapter.py
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
|