Skip to content

Data


Data handling module for the Flask server.

This module provides functions to interact with the MongoDB database, retrieve and process data related to video annotations and concepts.

Functions:

Name Description
load_db

Connects to the MongoDB database and returns the database object.

delete_graphs

Deletes all graph documents associated with the given email.

get_conll

Retrieves the CoNLL data for the specified video ID.

get_sentences

Extracts sentences from the parsed CoNLL data between the specified start and end IDs.

format_datetime

Formats a datetime string by removing the type annotation.

get_concept_list

Retrieves a list of concepts for the specified annotator and video ID.

get_concept_map

Retrieves a concept map for the specified annotator and video ID.

get_concept_vocabulary

Retrieves the concept vocabulary for the specified annotator and video ID.

get_concept_instants

Retrieves concept instants for the specified annotator and video ID.

get_concept_targets

Retrieves the target concepts for the specified concept ID.

get_concept_prerequisites

Retrieves the prerequisite concepts for the specified concept ID.

build_concept_without_sub_graph

Builds a concept object without subgraph information.

build_concept_sub_graph_without_target_recursively

Builds a subgraph for a concept recursively without target information.

build_concept_sub_graph

Builds a subgraph for a concept including target information.

retrieve_primary_notions

Retrieves primary notions from a concept instance.

build_array

Builds an array of concepts for the specified annotator and video ID.

build_array(annotator, video_id)

Builds an array of concepts for the specified annotator and video ID.

Parameters:

Name Type Description Default
annotator str

The ID of the annotator.

required
video_id str

The ID of the video.

required

Returns:

Type Description
list

A list of concepts.

Source code in apps/augmentator/src/flask-server/data.py
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
def build_array(annotator,video_id):
    """
    Builds an array of concepts for the specified annotator and video ID.

    Parameters
    ----------
    annotator : str
        The ID of the annotator.
    video_id : str
        The ID of the video.

    Returns
    -------
    list
        A list of concepts.
    """
    concept_map = get_concept_map(annotator,video_id)
    concept_instants = get_concept_instants(annotator,video_id)
    primary_concept_list = get_concept_list(annotator,video_id)
    parsed_conll = parse(get_conll(video_id))
    conceptsList = []
    for c in primary_concept_list:
        conceptsList.append(build_concept_without_sub_graph(concept_instants,c["id"]))
    for c in conceptsList:
        c["subgraph"] =  build_concept_sub_graph(concept_map, concept_instants, c["conceptName"])
        c["subgraph"]["primary_notions"] = retrieve_primary_notions(c)
        for c_i in concept_instants:
            if c_i["concept_id"] == c["conceptName"]:
                c["description"] = get_sentences(parsed_conll, c_i["start_sent_id"], c_i["end_sent_id"])

    return conceptsList

build_concept_sub_graph(concept_map, concept_instants, concept_id)

Builds a subgraph for a concept including target information.

Parameters:

Name Type Description Default
concept_map list

The concept map.

required
concept_instants list

The list of concept instants.

required
concept_id str

The ID of the concept.

required

Returns:

Type Description
dict

A dictionary representing the subgraph.

Source code in apps/augmentator/src/flask-server/data.py
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
def build_concept_sub_graph(concept_map, concept_instants, concept_id):
    """
    Builds a subgraph for a concept including target information.

    Parameters
    ----------
    concept_map : list
        The concept map.
    concept_instants : list
        The list of concept instants.
    concept_id : str
        The ID of the concept.

    Returns
    -------
    dict
        A dictionary representing the subgraph.
    """
    sub_graph = {"targets": [], "prerequisites": [], "primary_notions": [] }
    primary_targets = get_concept_targets(concept_map, concept_id)
    for c in primary_targets:
        sub_graph["targets"].append(build_concept_without_sub_graph(concept_instants, c))

    prerequisites = get_concept_prerequisites(concept_map, concept_id)
    prerequisites_concept = []
    for c in prerequisites:
        c = build_concept_without_sub_graph(concept_instants, c)
        prerequisites_concept.append(c)
    sub_graph["prerequisites"] = prerequisites_concept
    for concept in sub_graph["prerequisites"]:
        concept["subgraph"] = build_concept_sub_graph_without_target_recursively(concept_map,concept_instants, c["conceptName"])

    sub_graph["relations"] = concept_map
    return sub_graph

build_concept_sub_graph_without_target_recursively(concept_map, concept_instants, concept_id)

Builds a subgraph for a concept recursively without target information.

Parameters:

Name Type Description Default
concept_map list

The concept map.

required
concept_instants list

The list of concept instants.

required
concept_id str

The ID of the concept.

required

Returns:

Type Description
dict

A dictionary representing the subgraph.

Source code in apps/augmentator/src/flask-server/data.py
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
def build_concept_sub_graph_without_target_recursively(concept_map, concept_instants, concept_id):
    """
    Builds a subgraph for a concept recursively without target information.

    Parameters
    ----------
    concept_map : list
        The concept map.
    concept_instants : list
        The list of concept instants.
    concept_id : str
        The ID of the concept.

    Returns
    -------
    dict
        A dictionary representing the subgraph.
    """
    sub_graph = {"targets": [], "prerequisites": [], "primary_notions": []}
    prerequisites = get_concept_prerequisites(concept_map, concept_id)
    prerequisites_concept = []
    for c in prerequisites:
        concept = build_concept_without_sub_graph(concept_instants, c)
        if concept not in prerequisites_concept:
            prerequisites_concept.append(concept)
    sub_graph["prerequisites"] = prerequisites_concept
    for c in sub_graph["prerequisites"]:
        c["subgraph"] =  build_concept_sub_graph_without_target_recursively(concept_map,concept_instants, c["conceptName"])
    return sub_graph

build_concept_without_sub_graph(concept_instants, concept_id)

Builds a concept object without subgraph information.

Parameters:

Name Type Description Default
concept_instants list

The list of concept instants.

required
concept_id str

The ID of the concept.

required

Returns:

Type Description
dict

A dictionary representing the concept.

Source code in apps/augmentator/src/flask-server/data.py
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
def build_concept_without_sub_graph(concept_instants,concept_id):
    """
    Builds a concept object without subgraph information.

    Parameters
    ----------
    concept_instants : list
        The list of concept instants.
    concept_id : str
        The ID of the concept.

    Returns
    -------
    dict
        A dictionary representing the concept.
    """
    concept = {"conceptName": "", 
                        "type": "", 
                        "description": "", 
                        "startTimestamp": "",
                        "endTimestamp": "",
                        "image": "",
                        "subgraph": []}
    concept["conceptName"] = concept_id

    for c in concept_instants:
        if c["concept_id"] == concept_id:
            concept["startTimestamp"] = c["start_time"]
            concept["endTimestamp"] = c["end_time"]
    return concept

delete_graphs(email)

Deletes all graph documents associated with the given email.

Parameters:

Name Type Description Default
email str

The email address associated with the graph documents to delete.

required

Returns:

Type Description
DeleteResult

The result of the delete operation.

Source code in apps/augmentator/src/flask-server/data.py
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
def delete_graphs(email):
    """
    Deletes all graph documents associated with the given email.

    Parameters
    ----------
    email : str
        The email address associated with the graph documents to delete.

    Returns
    -------
    pymongo.results.DeleteResult
        The result of the delete operation.
    """
    collection = db.graphs
    if collection.find({"email":email}) is not None:
        return collection.delete_many({"email":email})

format_datetime(str)

Formats a datetime string by removing the type annotation.

Parameters:

Name Type Description Default
str str

The datetime string to format.

required

Returns:

Type Description
str

The formatted datetime string.

Source code in apps/augmentator/src/flask-server/data.py
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
def format_datetime(str):
    """
    Formats a datetime string by removing the type annotation.

    Parameters
    ----------
    str : str
        The datetime string to format.

    Returns
    -------
    str
        The formatted datetime string.
    """
    s = str.split("^^")
    return s[0]

get_concept_instants(annotator, video_id)

Retrieves concept instants for the specified annotator and video ID.

Parameters:

Name Type Description Default
annotator str

The ID of the annotator.

required
video_id str

The ID of the video.

required

Returns:

Type Description
list

A list of concept instants.

Source code in apps/augmentator/src/flask-server/data.py
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
def get_concept_instants(annotator, video_id):
    """
    Retrieves concept instants for the specified annotator and video ID.

    Parameters
    ----------
    annotator : str
        The ID of the annotator.
    video_id : str
        The ID of the video.

    Returns
    -------
    list
        A list of concept instants.
    """
    pipeline = [
        {"$unwind": "$graph.@graph"},
        {
            "$match":
                {
                    "video_id": str(video_id),
                    "annotator_id": str(annotator),
                    "graph.@graph.type": "oa:annotation",
                    "graph.@graph.motivation": "describing",
                }

        },

        {"$project":
            {
                "concept_id": "$graph.@graph.body",
                "start_time":"$graph.@graph.target.selector.startSelector.value",
                "end_time": "$graph.@graph.target.selector.endSelector.value",
                "start_sent_id": "$graph.@graph.target.selector.startSelector.edu:conllSentId",
                "end_sent_id":  "$graph.@graph.target.selector.endSelector.edu:conllSentId",
            }
        },


        {"$sort": {"time": 1}}]

    collection = db.graphs
    aggregation = collection.aggregate(pipeline)
    concept_instants = list(aggregation)
    for c in concept_instants:
        c["start_time"] = format_datetime(c["start_time"])
        c["end_time"] = format_datetime(c["end_time"])
        c["concept_id"] = c["concept_id"].replace("edu:","").replace("_"," ")
    return concept_instants

get_concept_list(annotator, video_id)

Retrieves a list of concepts for the specified annotator and video ID.

Parameters:

Name Type Description Default
annotator str

The ID of the annotator.

required
video_id str

The ID of the video.

required

Returns:

Type Description
list

A list of concepts.

Source code in apps/augmentator/src/flask-server/data.py
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
def get_concept_list(annotator, video_id):
    """
    Retrieves a list of concepts for the specified annotator and video ID.

    Parameters
    ----------
    annotator : str
        The ID of the annotator.
    video_id : str
        The ID of the video.

    Returns
    -------
    list
        A list of concepts.
    """
    collection = db.graphs
    pipeline = [
        {"$unwind": "$graph.@graph"},
        {
            "$match":
                {
                    "video_id": str(video_id),
                    "annotator_id": str(annotator),
                    "graph.@graph.type": "skos:Concept",
                }

        },

        {"$project":
            {
                "id": "$graph.@graph.id",
                "name": "$graph.@graph.id"
            }
        },

        {"$sort": {"time": 1}}

    ]

    aggregation = collection.aggregate(pipeline)
    concept_list = list(aggregation)
    for c in concept_list:
        c["id"] = c["id"].replace("edu:","").replace("_"," ")

    #get_concept_vocabulary(annotator, video_id)

    return concept_list

get_concept_map(annotator, video_id)

Retrieves a concept map for the specified annotator and video ID.

Parameters:

Name Type Description Default
annotator str

The ID of the annotator.

required
video_id str

The ID of the video.

required

Returns:

Type Description
list

A list representing the concept map.

Source code in apps/augmentator/src/flask-server/data.py
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
def get_concept_map(annotator,video_id):
    """
    Retrieves a concept map for the specified annotator and video ID.

    Parameters
    ----------
    annotator : str
        The ID of the annotator.
    video_id : str
        The ID of the video.

    Returns
    -------
    list
        A list representing the concept map.
    """
    collection = db.graphs

    pipeline = [
       {"$unwind": "$graph.@graph"},
       {
           "$match":
               {
                   "video_id": str(video_id),
                   "annotator_id": str(annotator),
                   "graph.@graph.type": "oa:annotation",
                   "graph.@graph.motivation": "edu:linkingPrerequisite",
               }
       },

        {"$project":
            {
                "prerequisite": "$graph.@graph.body",
                "target": "$graph.@graph.target.dcterms:subject.id",
                "weight": "$graph.@graph.skos:note",
                "time": "$graph.@graph.target.selector.value",
                "sent_id": "$graph.@graph.target.selector.edu:conllSentId",
                "word_id": "$graph.@graph.target.selector.edu:conllWordId",
                "xywh": "$graph.@graph.target.selector.edu:hasMediaFrag",
                "creator": "$graph.@graph.dcterms:creator",
                "_id": 0
            }
        },

        {"$sort": {"time": 1}}

    ]

    aggregation = collection.aggregate(pipeline)
    concept_map = list(aggregation)

    for rel in concept_map:
        rel["prerequisite"] = rel["prerequisite"].replace("edu:","").replace("_"," ")
        rel["target"] = rel["target"].replace("edu:","").replace("_"," ")
        rel["weight"] = rel["weight"].replace("Prerequisite","")
        rel["time"] = rel["time"].replace("^^xsd:dateTime","")
        if "xywh" not in rel:
            rel["xywh"] = "None"

    return concept_map

get_concept_prerequisites(concept_map, concept_id)

Retrieves the prerequisite concepts for the specified concept ID.

Parameters:

Name Type Description Default
concept_map list

The concept map.

required
concept_id str

The ID of the concept.

required

Returns:

Type Description
list

A list of prerequisite concepts.

Source code in apps/augmentator/src/flask-server/data.py
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
def get_concept_prerequisites(concept_map, concept_id):
    """
    Retrieves the prerequisite concepts for the specified concept ID.

    Parameters
    ----------
    concept_map : list
        The concept map.
    concept_id : str
        The ID of the concept.

    Returns
    -------
    list
        A list of prerequisite concepts.
    """
    prerequisites = []
    for relation in concept_map:
        if relation["target"] == concept_id:
            prerequisites.append(relation["prerequisite"])
    return prerequisites

get_concept_targets(concept_map, concept_id)

Retrieves the target concepts for the specified concept ID.

Parameters:

Name Type Description Default
concept_map list

The concept map.

required
concept_id str

The ID of the concept.

required

Returns:

Type Description
list

A list of target concepts.

Source code in apps/augmentator/src/flask-server/data.py
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
def get_concept_targets(concept_map, concept_id):
    """
    Retrieves the target concepts for the specified concept ID.

    Parameters
    ----------
    concept_map : list
        The concept map.
    concept_id : str
        The ID of the concept.

    Returns
    -------
    list
        A list of target concepts.
    """
    targets = []
    for relation in concept_map:
        if relation["prerequisite"] == concept_id:
            targets.append(relation["target"])
    return targets

get_concept_vocabulary(annotator, video_id)

Retrieves the concept vocabulary for the specified annotator and video ID.

Parameters:

Name Type Description Default
annotator str

The ID of the annotator.

required
video_id str

The ID of the video.

required

Returns:

Type Description
dict or None

A dictionary representing the concept vocabulary, or None if not found.

Source code in apps/augmentator/src/flask-server/data.py
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
def get_concept_vocabulary(annotator, video_id):
    """
    Retrieves the concept vocabulary for the specified annotator and video ID.

    Parameters
    ----------
    annotator : str
        The ID of the annotator.
    video_id : str
        The ID of the video.

    Returns
    -------
    dict or None
        A dictionary representing the concept vocabulary, or None if not found.
    """
    collection = db.graphs

    pipeline = [
        {"$unwind": "$conceptVocabulary.@graph"},
        {
            "$match":
                {
                    "video_id": str(video_id),
                    "annotator_id": str(annotator),
                    "conceptVocabulary.@graph.type": "skos:Concept"
                }
        },

        {"$project":
            {
                "prefLabel": "$conceptVocabulary.@graph.skos:prefLabel.@value",
                "altLabel": "$conceptVocabulary.@graph.skos:altLabel.@value",
                "_id": 0
            }
        }

    ]

    aggregation = collection.aggregate(pipeline)
    results = list(aggregation)

    # define new concept vocabulary
    conceptVocabulary = {}

    # if there is none on DB
    if len(results) == 0:
        print(conceptVocabulary)
        return None

    # iterate for each concept and build the vocabulary basing on the number of synonyms
    for concept in results: 

        if "altLabel" in concept :
            if isinstance(concept["altLabel"], list):
                conceptVocabulary[concept["prefLabel"]] = concept["altLabel"]
            else:
                conceptVocabulary[concept["prefLabel"]] = [concept["altLabel"]]
        else:
            conceptVocabulary[concept["prefLabel"]]=[]

    #print(conceptVocabulary)

    return conceptVocabulary

get_conll(video_id)

Retrieves the CoNLL data for the specified video ID.

Parameters:

Name Type Description Default
video_id str

The ID of the video.

required

Returns:

Type Description
str or None

The CoNLL data if found, otherwise None.

Source code in apps/augmentator/src/flask-server/data.py
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
def get_conll(video_id):
    """
    Retrieves the CoNLL data for the specified video ID.

    Parameters
    ----------
    video_id : str
        The ID of the video.

    Returns
    -------
    str or None
        The CoNLL data if found, otherwise None.
    """
    collection = db.conlls
    if collection.find_one({"video_id":video_id}) is not None:
        return collection.find_one({"video_id":video_id})["conll"]
    else:
        return None

get_sentences(parsed_conll, start_id, end_id)

Extracts sentences from the parsed CoNLL data between the specified start and end IDs.

Parameters:

Name Type Description Default
parsed_conll list

The parsed CoNLL data.

required
start_id int

The starting sentence ID.

required
end_id int

The ending sentence ID.

required

Returns:

Type Description
str

The extracted sentences.

Source code in apps/augmentator/src/flask-server/data.py
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
def get_sentences(parsed_conll,start_id,end_id):
    """
    Extracts sentences from the parsed CoNLL data between the specified start and end IDs.

    Parameters
    ----------
    parsed_conll : list
        The parsed CoNLL data.
    start_id : int
        The starting sentence ID.
    end_id : int
        The ending sentence ID.

    Returns
    -------
    str
        The extracted sentences.
    """
    sentences = ""
    start_id = int(start_id)
    end_id = int(end_id)
    # print(start_id)
    # print(end_id)
    for i in range(start_id, end_id):
        for k in range(0,len(parsed_conll[i])):
            sentences += parsed_conll[i][k]["lemma"] +" "
    return sentences

load_db()

Connects to the MongoDB database and returns the database object.

Returns:

Name Type Description
db Database

The MongoDB database object.

Source code in apps/augmentator/src/flask-server/data.py
47
48
49
50
51
52
53
54
55
56
57
58
def load_db():
    """
    Connects to the MongoDB database and returns the database object.

    Returns
    -------
    db : pymongo.database.Database
        The MongoDB database object.
    """
    client = pymongo.MongoClient("mongodb+srv://"+MONGO_CLUSTER_USERNAME+":"+MONGO_CLUSTER_PASSWORD+"@clusteredurell.z8aeh.mongodb.net/edurell?retryWrites=true&w=majority")
    db = client.ekeel
    return db

retrieve_primary_notions(concept_instance)

Retrieves primary notions from a concept instance.

Parameters:

Name Type Description Default
concept_instance dict

The concept instance.

required

Returns:

Type Description
list

A list of primary notions.

Source code in apps/augmentator/src/flask-server/data.py
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
def retrieve_primary_notions(concept_instance):
    """
    Retrieves primary notions from a concept instance.

    Parameters
    ----------
    concept_instance : dict
        The concept instance.

    Returns
    -------
    list
        A list of primary notions.
    """
    primary_notions = []
    for c in concept_instance["subgraph"]["prerequisites"]:
        if c["subgraph"]["prerequisites"] == []:
            primary_notions.append(c)
        else:
            primary_notions = primary_notions + retrieve_primary_notions(c)
    return primary_notions