EDURELL Project

Video Segmentation

Algorithms

Video Analyzer algorithm -

Gaggioaxel | May 20, 2023

Load XGBoost Sum all the

model classificator timeframes and
and divide video divide by the total

into num_segments number of frames,

saved the
Video lyzer(video id) video_id
internally

is video
ended?

call Are slidi: and
Instance.is_slide_video() slidish_frames set?

Y

extract a
N frame at i-th
segment,

The cut is also
double validated

Video Analyzer(video_id) by checking if

.set(video_slidishness,slidish_frames_startend) compute threshold preprocess_video() b, two contiguous
segments are not classified a
slides
model?
|

call
Instance.analyze_video()

Is slide video?

cut the timeframe to
(start segment, i-th segment)

Video Analyzer(video_id)
.set(slide_startends)

select the text whose
height lays above a certain -
threshold of the el Instance.reconstruct :Iides from_times_set()
distribution, then filter by (SO Y . e
those texts that are the
topmost in the slides.

take note if there’s no active timeframe

Stop

N

'y

Analyze_video
Gaggioaxel | May 20, 2023

execute
Instance.is_slide_video()

is_slide_video()

Instance.analyze_video() been executed?

is slide video?

SERIECE:Y
VideoSpeedManager(slidish_timeframes)

is video

xtract next f =
ended?

Yes

flush text in
cache if
there's one

is
save the the text

cached text ~onscreen
and cache the different from the

new one cached
one?

check if there's text on screen and save in cache =&

is there

cached text that compact nearby
should be on and similar texts

screen? and remove
classification
errors

is this frame
similar to the
previous?

Stop ~—No—

Implementation

The coarse-analysis of the video that finds the percentage of slides in the video is
calculated by using a pre-trained ML model that recognizes the “slidish” images
and is double checked with the OpenCYV library:

Algorithm 1 Video Pre-Processing

F': video frames,
OUT list of cut frames’ windows
N: number of video frames,
M: number of segments
Model: XGBoost pre-trained ML model that recognizes slides in images
procedure CUT NON-SLIDE FRAMES(M=150)
for i € {2...150} do
if both (F(i—1)«n/ar: Fianyar) not ISSLIDEFRAME(Model) and StartFrame is set then
OUT; + (StartFrame,i — 1)
unset StartFrame
else if Fi, n/n ISSLIDEFRAME(Model) and StartFrame is not set then
if VALIDATEDWITHOCR (F,n/ar (2 (width, height) < — > 2(width, height)]) then
StartFrame < i1 —1
return OUT

Then if the video has been classified as “slidish enough” the video is analyzed
based on this algorithm:

Algorithm 2 Text From Video Segmentation

OUT: a list of already processed slide frames
C'T: currently-on-screen text
V: video reference
procedure VIDEO SEGMENTATION
for every frame F; in V do
if there’s no C'T and F; contains some text then
CT « (text, FIRSTFRAMEOCCURENCEOFTHISTEXT(V, text))
else if there’s some CT and F; is different enough'? from F;_, then
if CT and text extracted from F; are not the same then
OUT; + (CT,LASTFRAMEOCCURENCEOFTHISTEXT(V, CT .text))

return OUT

Classes description

Video Segmentation in the Edurell platform is performed in Python by using these main
classes:

In the image.py file:
- ImageClassifier (IC): an image wrapper that finds faces and text in the image and
manages color scheme conversions

In the video.py file:
=> LocalVideo (LV): class that manages OpenCV video file loading, frame cursor set,
frames extraction, conversion and resize.

- VideoSpeedManager (VSM): wrapper of LocalVideo that manages the logic of
frames extraction.

In the segmentation.py file:
-> TimedAndFramedText (TFT): dataclass that contains the following informations of

the slide segment of the video:

€ Full text of that slide

€ XandY positions and Width and Height (normalized) of the bounding

boxes of every sentence indexed from the full text

@ |Initial and last frame number of the video where the text appear on screen
With some utility function that allow to insert multiple start-end windows of frames that
contain that text:

start_end_list:List[Tuple[{int,int)]]} ->

rt_end elem)

.bb) fo start_char r pos),bb in self. framed sentences]

- VideoAnalyzer (VA): class that contains the logic to read a video and extract from
it:
€ The transcript, and its segmentation into timed sentences
€ The keyframes (based on the previous segmentation method
which is based on colour histograms)

Cre; ey frames | f,start times,end times,S5,seconds range, image scale:float

get_transcript(self,lang:st

transcript segmentation(self, subtitles, ¢ threshold=8.22, sec_min=35, 5=1, frame range=15,create thumbnails= Ve

€ The percentage of slide frames over the entire video length,
classification based on a threshold

}.get_dim frame()

€ The slide frames are extracted by analyzing the whole video

Then each segment of the output list is compacted by merging similar texts
and contiguous segments of same text. Lastly each section is validated
with a double check for each segment

€ Slide’s titles are chosen with statistical analysis on the height of the text
and it’s position with respect to the other text of the slide:

€ Concepts are extracted from the title with phrasemachine and definitions
and in-depths search are calculated with an heuristic (the definition could
be in a timeframe of a number of seconds around the slide first

appearance where the concept is cited in the transcript, and the in-depth

could be the whole duration of the slide):

adjust or insert definitions and indepth times(self,burst concepts:list .definition tol seconds

self._slide_titles
) Exception(
extract defs and indepths({titles:'1 .timed sentences:'l]*.definition tol seconds:float

._video_id,return_conll=)1

or sent in parse(get
W _output=_show_output)

timed sentences = get_timed sentences{self.get_transcrip . [sent.metadata
video defs o_in depths = extract defs_and_indepths(sel slide_titles,timed semtences,definition_tol

seconds_to_h_mm_ss

) + minutes

hours+': "#minutes+' : '+seconds+' . '+millisec

added concepts = |

for dict_num,concepts_video dict enumerate | [vide deo_in_depths])
concepts_use eo_dict.keys()}

ideo dict.keys() bu == concept_description type

cept deo dict[burst_cc A\

pts_video dict[burst concept

pts video dict[burst concept
d'] pts_video dict[burst_con
econds_to h mm_ss_dddddd(concepts video dic t
econds_to_h_mm_ss_dddddd{concepts_videa dict[burst_concept

video dict.keys():

:concept_name,
concepts video dict
d':concepts_video dict
seconds to h mm_ss dddddd cept_name][B][1]['start']
econds_to h mm_ss_dddddd pt_name][-1][1]["e 1.
concept_descr

added concepts.append (concept name)

added_concepts,burst_concepts

@ Slides can be reconstructed from the times saved in the database in the

form of timeframes:

startends
ier(image and scheme=
self. video id)

end seconds in slide startends
loc video.get num frame from time(slide end

video.get num frame from time|slide start seconds),

startend = |
ide_frames_startend[8])

loc_video.set_num_frame(s
frame.set img{loc wvideo.extract mext frame())
xt_extracted = frame.extract_textireturn_text= i 0 T 1
list.append(TimedAndFramedText (text extracted, startend] })

P

text in video = TFT _1i
€ Each step can be a start point by setting the internal variables from the
data read from the database:

.5lidish frames startend= ,&lide startends= (titles=

= video slidishne
slidish frames startend

lide startends

-> A process scheduler that automatically segmentates the videos in a global queue
of segmentations and saves the results on the database:

