Abstract

In recent years e-learning platforms and online courses are spreading
more and more, also boosted by the recent COVID-19 pandemic. How-
ever, all the most popular platforms tend to represent the material in a
linear way, without exploiting the relations between the topics explained
in the video. The current method of fruition of the educational videos
can be re-discussed using knowledge extracted from the video itself in
order to facilitate the learning process of a student.

With this project, called EDURELL, we aim to deepen the relations
between concepts explained in an educational video in order to reduce
the workload of a learner and to offer a different experience for browsing
the video.

Therefore, the main field of research of this system is how to extract
the prerequisite relations, which are the most important type of relation
between concepts in an educational video because they show the learning
order of a new topic. The prerequisite relations allow also the creation
of a concept map, in which each node is a concept and each link is a
relation, that can be used to augment a video in order to improve the
user experience in learning new topics.

This system offers an easy to use interface for the manual extraction
of prerequisite relations, and, since manual annotation can be time con-
suming, it offers an automatic method of extraction which can be tested
by comparing the results with the manual extraction. In this disser-
tation, the results of the EDURELL automatic method are compared
with three baseline methods of the current state of art, and it shows an
improvement in different metrics such as Fl-score, Vertex Edge Overlap
and Cohen’s kappa.

The obtained knowledge graphs are then organized using the Web
Annotation ontology, expanded where needed, and stored in an online
database, in order to permit the exploitation of the knowledge graph for

the video augmentation for learners.






Contents

1 The EDURELL system 1
1.1 Goals and Description of the System . . . . . . . . . .. 1
1.2 System Architecture . . . . . .. ... 2
1.3 Tools and libraries . . . . . . . . .. .. ... ... ... 4
1.4 Ontology-based Data Model . . . . . . ... ... ... 7
1.5 Database . . . . . . ... 11

1.5.1 Examples queries and performances . . . . . .. 13
1.6 Semi-automatic Video Annotation Tool . . . . . . . .. 15
1.6.1 Goals and description . . . . . . ... ... ... 15
1.6.2 Video Preprocessing . . . . . . . . .. ... ... 16
1.6.3 Video annotation . . . . . ... ... ... ... 22
1.6.4 Analysis . . . ... ... ... 28
1.6.5 Burst Analysis and temporal reasoning . . . . . 30
1.6.6 Evaluation . . . .. ... ... ... ... .... 37
1.7 Video augmentation for learners . . . . . . . ... ... 47
1.7.1 Goals and description . . . . . . ... ... ... 47
1.7.2  Video Exploration . . . . . ... ... ... ... 48
1.8 Server deployment . . . . . . ... ... 52

11






Chapter 1

The EDURELL system

In this document, we illustrate the EDURELL system and all its fea-
tures.

The first section contains the goals that we aim to achieve, then the
architecture of the system is explained with some diagrams to make
the process easier. In the third section we list all the main tools and
libraries used for the implementation. In the fourth and fifth sections
we describe the database, and in particular, which is the data model
that is implemented - with some examples.

Then, we describe both the video annotation and the video augmenta-
tion, also showing the interfaces of the system and the results obtained.

Finally, we explain how the system is deployed on the server

1.1 Goals and Description of the System

Concept maps are a way to represent key concepts by following the
learning order. In this representation each node is a concept and the
links between them are the prerequisite relations.

Therefore, the use of concept maps can indicate to the student the
learning path in order to fully apprehend a new concept.

The EDURELL project aims to facilitate the learning process of a
student watching an educational video by taking advantage of concept

maps and by pointing out where a concept is described in the video.



2 CHAPTER 1. THE EDURELL SYSTEM

In order to achieve these purposes the system must first permit the
extraction of the knowledge graphs, which it can be done manually by
an expert annotator, semi-automatically or automatically by exploiting
the Burst analysis that we will explain in section 3.6.5.

The knowledge graphs, that contains the prerequisite relations and
the concepts descriptions, tracked in terms of time in the video, are
then used to augment the video, and thus, to allow a learner to browse
the video in a new scenario, optimizing the learning process in terms of

time and user experience.

1.2 System Architecture
The architecture of the system is composed from two tools.

The first tool "EDURELL Annotation Tool" is designed for the ex-
traction of knowledge graphs from educational videos.

The videos are taken from Youtube and, in order to extract all the
prerequisite relations and all the points where a concept is explained,
the video is processed through Python Flask, which it will organise the
concept map in a knowledge graph that is stored on MongoDB Atlas in
a JSON-LD format. Python Flask allows us also to provide several type
of analysis of the extracted graphs.

The second tool "EDURELL Video Augmentation” is designed to
support learners in the use of educational contents in multimedia for-
mat, through the hypervideo functionalities. The aim is to improve the
browsing experience, and to receive support during the use of educa-
tional videos, by taking advantage of knowledge graphs extracted with
the EDURELL Annotation Tool.

Both of the tools uses Python Flask as back end and they share the
same MongoDB database, for the front end part however, the first tool is
implemented using Javascript and Bootstrap, and the second one using

the React technologies.



1.2. SYSTEM ARCHITECTURE

You

Educational
Video

%‘ Knowledge graph extraction
Flask

Store
graph

| o

Atlas

I e s

Figure 1.1: Architecture of the annotation tool

(11 Tube

mongoDB
Atlas
Educational Knowledge
Video graph
Y Y
Video Augmentation

Figure 1.2: Architecture of the video augmentation tool



4 CHAPTER 1. THE EDURELL SYSTEM

1.3 Tools and libraries

This section describes the main tools and libraries used for the imple-

mentation of the project.

Python Flask

A web application is needed in order to permit an easy access to the
system through a browser. To achieve this purpose the project is imple-
mented by using Flask!, which is a web framework written in python.

Moreover, Python will allow us to use all libraries needed.

Youtube-dl and youtube-transcript-api

Youtube-dl? is a Python package that allows to download videos from
YouTube.com and other platforms.

Youtube-transcript-api® is a python API which allows you to get the
transcript /subtitles for a given YouTube video. It also works for auto-
matically generated subtitles and it supports translating subtitles.

Punctuator

Punctuator? is a bidirectional recurrent neural network model that al-
lows to add punctuation in a text. For the periods, which are our main

goals, the score of the pretrained model are precision 72.3, recall 71.5
and Fl-score: 71.9
Sentence-transformers

SentenceTransformers® is a Python framework for state-of-the-art sen-

tence, text and image embeddings.

Thttps: //flask.palletsprojects.com /en/2.0.x/
https://github.com /ytdl-org/youtube-dl

3https:/ /pypi.org/project /youtube-transcript-api,/
4https://github.com /ottokart /punctuator2
Shttps://github.com /UKPLab /sentence-transformers



1.3. TOOLS AND LIBRARIES !

This framework can be used to compute text embeddings. These
embeddings can then be compared e.g. with cosine-similarity to find
sentences with a similar meaning. This can be useful for semantic textual
similarity.

The framework is based on PyTorch and Transformers and offers a

large collection of pre-trained models tuned for various tasks.

Pandas

Pandas® is a data analysis tool built with Python, it allows a fast data
manipulation through the use of the pandas dataframes.

Pytorch

Pytorch 7 is an open-source Python library used mainly in machine
learning and deep learning, it is specialized in tensor computations, au-

tomatic differentiation, and GPU acceleration.

OpenCV

OpenCV?® (Open Source Computer Vision Library) is an open source
computer vision library, it allows a real-time image processing with dif-
ferent implementations of computer vision algorithms. It has different
programming interfaces like C, C++, Python and Android.

Rdflib

RDFLib? is a Python package to manage RDF triples. It contains
Parsers and Serializers (RDF/XML, N3, NTriples, N-Quads, Turtle,
TriX, JSON-LD) and it allows to perform query SPARQL.

Shttps://pandas.pydata.org/
Thttps://pytorch.org/
8https://pypi.org/project /opencv-python /
9https:/ /rdflib.readthedocs.io/en /stable/



6 CHAPTER 1. THE EDURELL SYSTEM

PyMongo

PyMongo'? is a Python distribution containing tools for working with
MongoDB, it allows to upload and query the data of the MongoDB Atlas
database.

NItk

Nltk ' (Natural Language Toolkit) is a Python package that provides
a suite of text processing libraries for classification, tokenization, stem-

ming, tagging, parsing, and semantic reasoning.

Conllu

CoNLL is a Tab Separated Value data format, used in Natural Language
Process, in which each line is a word and each column is an attribute
of the word such as: ID (index in sentence), FORM (word form or
punctuation symbol), LEMMA (lemma or stem of word form), UPOS
(universal part-of-speech tag), XPOS (Language-specific part-of-speech
tag)

Conllu'? it’s a Python library that allows to parse and to manage

conll format data.

Bootstrap

Bootstrap!® it’s a Javascript front-end library that allows a quick and

easy design of responsive web apps.

React

React! it’s a Javascript front-end open source library for building user

interfaces created by Facebook.

Ohttps://pymongo.readthedocs.io/en /stable/
Uhttps: //www.nltk.org/
2https://pypi.org/project /conllu/
Bhttps://getbootstrap.com/

Uhttps:/ /it.reactjs.org/



1.4. ONTOLOGY-BASED DATA MODEL 7
Vis.js

Vis.js' is a Javascript visualization library that allows the creation of
networks. The library supports also custom styles and allow to interact
with the visualized graph. The network visualization works smooth on

any modern browser for up to a few thousand nodes and edges an it uses

HTML canvas for rendering.

1.4 Ontology-based Data Model

Educational videos represent one of the most popular formats in online
education, but they can also suffer of several limitations. They can for
instance be lengthy and thus hard to navigate when you need to recall
concepts; besides, they generally lack explicit tables of contents or other
indexing systems for exploring the video content.

To solve this problem, the first step is to have an effective represen-
tation of the content of the video, with a data model which is able to
encode both concepts which are explained in it and evolving relations
between them, relating concepts with their prerequisite (weak or strong).

For this purpose we used the Web Annotation Ontology, extended
where needed, in such way to exploit the semantic web benefits and
obtain an explorable knowledge graph, in json-ld format. The Edurell
Data Model'® describes a structured model to annotate video resources
with the concepts which are explained and with prerequisite relation-
ships between those concepts.

There are three types of annotation:

e CoNLL Annotation: Each video resource may be associated with
at most one ConLL file which is used to describe the words of the

video transcription.

As motivation of the annotation is used edu:linkingConll which ex-

tends the original oa:linking motivation, as in figure 1.3.

Yhttps://visjs.github.io /vis-network /docs /network /
6https: //frcassi.github.io/edurell /



edu:
inkingConl

oa:motivatedBy — ann0

CHAPTER 1. THE EDURELL SYSTEM

}—— rdf:itype ——» oa:

Annotation

oa:hasBody oa:hasTarget

rdf:type

dctypes:
Text

rdf:type

'

dctypes:
Movinglmage

Figure 1.3: CoNLL linking

e Concept description: in this annotation we need to have the start

and the end time in which a concept is explained, the corresponding

sentences of the CoNLL and if the description is a “definition” or a

an “in depth” explanation.

“2021-01-24T18:17.032"

determs:created

oa: )
oa:motivatedBy

skosinote  oazhasBody

oo

rdi:type

skos:Concept

- . <
o~ sexual ~
\___E orphism _ o

am )

( personl j
—

dcterms:creator

ritype

oahasTarget

V oa:Specific

oa:hasSource oahasSelector

- § oa: Range

rdf:type

dctypes
Movingimage

edu:instant e

Selector

oahas oahas
StartSelector EndSelector
- @ -
rdf:type / \ y \
edu: edu; edu edu

conllSentld eonllWardid conliSentid conllWordld

@ nur-u:-u-e @ @ rdfw:lue @

( ronos:28~msadatetime” ) (( "00:08:45%%xd: dateTime” )

Figure 1.4: Annotation of a description

eduinstant
Selector




1.4. ONTOLOGY-BASED DATA MODEL 9

The body of the annotation is the concept that is being explained,
which is of the type SKOS:Concept. The target of the annotation
is given by an empty node which links the video and the selector to
have start and end time of the concept’s description. The video is
linked by the web annotation ontology property oa:hasSource, which

explains that the description has as source the video.

In order to have the times, two selectors from oa ontology are used,
and in order to have also the link to the CoNLL file, we extended
the ontology with edu:conliSentld and edu:conllWordId that respec-
tively contains the id of the sentence in the conll and the id of the

word.

In order to distinguish between definition of a concept (description
which contains the main definition of the concept) and in depth
description (description of the concept that adds info to the concept
but it’s not the main definition) the SKOS:note property is used.

e Prerequisite relations: this annotation includes the prerequisite and
the target of the relation, the weight (strong or weak), the starting
time, the portion of the frame that contains the target (if present)
and the id of the CoNLL’s sentence. An example is given in figure
1.5

In this annotation the body is given by the SKOS:Concept which is
the prerequisite of the relation. Similarly to the concept’s descrip-
tion annotation, the target of the annotation is given by an empty
node with source the video, but it has a property dcterms:subject

with the concept which is the target of the prerequisite relation.

The Web Annotation’s selector contains the starting time of the
prerequisite relation using rdf:value, the ids of the sentence and the
word in the CoNLL, and the portion of the video’s frame in which
there is the target concept, given by the property edu:hasMediaFrag.

In order to distinguish between strong relations (prerequisites that

are strictly needed for the understanding of the target concept) and



10 CHAPTER 1. THE EDURELL SYSTEM

('2021-01-z4ns 17 uzz") ( personi )

v y—
dcterms:created dcterms:creator
oa )
- - i b skos:Concept
linkingPrerequisite oa:motivatedBy annl ) rdftype -
o | oaspecific |
] oa:hasTarget — Resource /
) . ] rdf:type
skos:note oa:hasBody dfitype .

“strongPrerequisite” e — — _/
s p . -
{ —> determe:subject —»{ e
X

a functional “—_dimorphism_ __.>

“~_morphology -

rdf-type ga :hasSource oa:hasselector
: & o
. edu:instan
skos:Concept - etiyne " Selector
rdf-type edu:hasMediaFrag /
T edu: edu:
- conlisentid conllWordid
- “xywh=50,50,640,480" \
dctypes:
Movingimage rdf:value
"0:06:42**xsd:time”

Figure 1.5: Annotation of a prerequisite relation

weak relations (not strictly needed but useful) the SKOS:note prop-
erty is used.

In order to easily distinguish between the different types of annota-
tions the oa:motivated By property is used. For a concept description the
annotation is motivated by oa:describing and for a prerequisite relation
the annotation is motivated by edu:linkingPrerequisite, which extends
the original oa:linking.



1.5. DATABASE 11

1.5 Database

To store JSON data for each input video, we explored a NoSQL database
solution. This technology stores documents directly in JSON format and
thus is very suited for our application.

The two main contenders for this technology are Firebase and Mon-
goDB. Firebase is a collection of cloud services offered by Google, while
MongoDB is just an open-source technology that you can use, and thus
is fairer to compare Firebase to MongoDB Atlas.

Firebase offers two cloud database services and they are both hosted
directly by Google. The two databases are Firestore and Realtime
Database.

According to Google survey 7 the second option suits our needs better
because we want to save data as simple JSON trees. But it has several
limitations, for example it’s not possible to filter on multiple conditions,
and thus we optioned for the MongoDB Atlas database which permits

an easy query of the knowledge graphs with high performances.

MongoDB collections

e Videos: this collection stores all the video’s data such as the youtube
id of the video, the title, creator, and all the data extracted through

the video processing that we will explain in section 3.6.2
e Conlls: it contains all the CoNLLs and corresponding ids

e Graphs: annotations extracted, it includes the ids of the annotator
and the JSON-LD of the annotation

e Users: the users are common to both the applications, this collection
contains name and surname of the user, email, hashed password if
the account is validated or not, and the history of the previous

videos watched.

https://firebase.google.com/docs /database /rtdb-vs-firestore



12

CHAPTER 1. THE EDURELL SYSTEM

_id: ObjectId("68e4352b53d2c78627d6elel”)
name: “Luca”
surname: "Mirenda”
email: "mirenda_luca@yahoo.com”
password_hash: "$2b$123QYERpVAN3Z31NP5y . ZFZwuM/ VI IvX7DkGcGMd78uz
v video_history list: Array
« @: Object
video wrl: "https://www.youtube.com/watch?v=sXLhYSt0ems"
video watchtime: 488
fragment_clicks: 18
node_clicks: 13
transcript_clicks: 1
searchbar_clicks: 3
notes: "aa”
lastChangesDate: 2821-11-18T17:48:82.387+88:88
» fragments_progress: Array
> logs: Array
: Object
: Object
: Object
: Object

LT T R
BowW R R

Figure 1.6: Users collection

For each video seen by the user all the necessary data is stored, such
as the watching time of the video in order to permit to the user to
restart the video from where he left and the notes that the student

took during the lesson.



1

2

1.5. DATABASE 13

1.5.1 Examples queries and performances

In order to query the database we tested two approaches.

The first approach is to get the json from the database and to parse
it using the rdflib library, then we retrieve the information using a
SPARQL query.

from rdflib import Graph

import time

3 import json

13

14

15

16

def get_descriptions(json_graph):

gr = Graph O\

.parse (data=json.dumps (json_graph), format=’json-1d4°)
tic = time.time ()

# Get all concepts explained in the video
queryl = """
PREFIX oa: <http://www.w3.org/ns/oa#>
PREFIX edu: <http://edurell.com/>
SELECT 7explained_concept
WHERE {
7ann oa:motivatedBy oa:describing.
7ann oa:hasBody 7explained_concept.

}H nn
qres = gr.query(queryl)
toc = time.time ()

return qres

Code 1.1: SPARQL query

In Code 3.1 there is an example of this approach, in which we identify
all the concepts that have been explained in the video. Results on big
graphs (100 or more prerequisite relations and concepts definitions) show

an average of 0.7 seconds in order to obtain the data.



14 CHAPTER 1. THE EDURELL SYSTEM

The second approach consists to get the data directly from MongoDB
Atlas, by querying the data using the PyMongo library.

| def get_concept_map (annotator, video_id):

10

11

12

13

14

collection = db.graphs

pipeline = [

{"$unwind": "$graph.@graph"},

{"$match":

{

"video_id": str(video_id),

"annotator_id": str (annotator),

"graph.Qgraph.type": "oa:annotation",

"graph.@Q@graph .motivation": "edu:linkingPrerequisite",
3

I

{"$project":

{

"prerequisite": "$graph.@graph.body",

"target": "$graph.O@graph.target.dcterms:subject.id",
"weight": "$graph.@graph.skos:note",

"time": "$graph.@graph.target.selector.value",
"sent_id":"$graph.@graph.target.selector.edu:conllSentId",
"word_id":"$graph.Qgraph.target.selector.edu:conllWordId",

"xywh": "$graph.@graph.target.selector.edu:hasMediaFrag",
"creator": "$graph.@graph.dcterms:creator",

"_id": O

b

},

{"$sort": {"time": 1}}
]

aggregation = collection.aggregate(pipeline)

concept_map list (aggregation)

return concept_map

Code 1.2: PyMongo query

In Code 3.2, the query gets the concept map annotated by a specific



1.6. SEMI-AUTOMATIC VIDEO ANNOTATION TOOL 15

annotator for a video, and thus all the prerequisite relations with all
the related data, such as the time for which the relation starts and the
relative sentence and word ids of the CoNLL.
Results on big graphs show an average of 0.02 seconds to get the data.
For this reason, the tests show that it is faster to query directly the
database through PyMongo instead of parsing the graph with rdflib and
then perform a SPARQL query.

1.6 Semi-automatic Video Annotation Tool

In this section, we describe the implementation of the annotation tool,

all the features available and all the interfaces and results are shown.

1.6.1 Goals and description

The tool allows the manual annotation of the prerequisite relations and
concept descriptions in order to build the knowledge graph based on the
ontology explained in section 3.4. But, since the manual annotation can
be time consuming, we aim to speed up the process by reducing the
workload of the annotator.

In fact, to ease the manual annotation, we developed an easy to use
interface that does not involve complex notions such as the RDF triples.
The annotator is asked only to annotate in real time the video with
the times in which there is a concept description and to point out the
prerequisite relations. Also, an initial set of concepts are shown to the
annotator, this will reduce the amount of time spent in adding concepts,
and thus the annotator can focus more on adding the relations. The
concepts, which the annotator can easily edit if necessary, are highlighted
in the video’s transcription, allowing the annotator to see the points in
the video where the concept is mentioned. For this reason when a video
is firstly uploaded to the system it needs a series of operation that we
deepen in section 3.6.2. Once the video is annotated the knowledge

graph is created and saved in JSON-LD format on a database.



16 CHAPTER 1. THE EDURELL SYSTEM

Moreover, the tool aims also to the semi-automatic or fully-automatic
extraction of the knowledge graph, through the use of the burst analysis
(explained in section 3.6.5), and in conclusion, it allows several types of

analysis on the extracted graphs.

1.6.2 Video Preprocessing

When a video is firstly uploaded to the system a series of operation to
process the video are performed, and then stored on the database in
order to allow a faster access to the video.

The first step is to download the video and the transcript. This is done
using the Python packages youtube-dl and youtube-transcript-ap: that
returns all the subtitles (both auto-generated and manual-generated)
with their starting and ending times.

This will allow to visualize the video synchronized with the transcrip-
tion and to browse the video through the times in the transcription,
and thus, to facilitate the annotation of the prerequisite relations and
concept definitions.

Once the subtitles are downloaded, the system will create the tran-
scription. Then, if the subtitles does not have a punctuation, a neural
net is implemented in order to add punctuation using punctuator. This
is a fundamental step in order to be able to do the sentence splitting for
the video segmentation.

From the obtained punctuated transcript, the CoNLL is generated
using the UDPipe APIs ¥, and parsed using the conllu library.

In conclusion, in order to facilitate and speed up the annotation pro-
cess two operation are done: video segmentation and keywords extrac-

tion.

8https://lindat.mff.cuni.cz/services /udpipe/api-reference.php



1.6. SEMI-AUTOMATIC VIDEO ANNOTATION TOOL 17

Video Segmentation

Sentence Semantic Detect scene
splitting similarity changes
Download video Add punctuation to
and subtitles the transcript
\J
Keywords
extraction and
CoNLL creation lemmatization

Figure 1.7: Pipeline of video’s processing

Video segmentation

To improve usability and reduce time we explored the No VoFExp solution
[Ver+21] and implemented a very similar approach, which segments the
video using semantic similarity, with this approach we aim to partition
the video in segments that covers different topics.

For this purpose, the punctuated transcript is divided in sentences
using the nltk tokenizer, and each sentence is then associated to its
starting and ending timestamp, recalculated from the times of the sub-
titles obtained from Youtube to match the new length of the sentence.

At this point, using sentence-transformers we mapped each sentence
in an embedding that identify the sentence, converting the sentence in
a tensor.

The embeddings are calculated using the BERT model, pretrained
by sentence-transformer, which can be used for clustering and semantic
textual similarity.

For every embedding computed in the previous step, we compute the
mean cosine similarity of the current segment, and the cosine similarity

between the current embedding and the previous one. If one of the

Yhttps: //huggingface.co/sentence-transformers /paraphrase-distilroberta-base-v1



1

18 CHAPTER 1. THE EDURELL SYSTEM

two similarities just computed is above a threshold, we consider the two
embeddings semantically similar and thus they will be merged together
into a single cluster. If this is not the case, we put the embedding into
a new cluster and iterate the process with the remaining embeddings.

At this point we obtain some ‘raw” segments, and we applied two
refinements to improve the results:

1) Aggregation of segments shorter than a given duration. In our
case, we decided to merge segments until their total length was at least
40 seconds.

2) Adjust end and start time of each segment based on detected scene
changes.

while cap.isOpened():

ret, current_frame = cap.read()

cap.set (1, frame_number)

if ret:

current_frame = cv2.resize(current_frame, (240, 180))

im = cv2.cvtColor (current_frame, cv2.COLOR_RGB2GRAY)
cv2.calcHist ([im], [0], Nome, [32], [0, 128])

cv2.normalize(h, h)

(=
Il

if frame_number > O:

diff = 0
for i, bin in enumerate (hist):

diff += abs(bin[0] - previous_hist[i][0])
all_diffs.append (diff)

summation += diff

frame_number += frame_to_skip

previous_hist = h

if cv2.waitKey (1) & OxFF == ord(’q’):
break



28

29

1.6. SEMI-AUTOMATIC VIDEO ANNOTATION TOOL 19

else:

break

0 cap.release ()

threshold = S * (summation / frame_number)

Code 1.3: Color Histogram - OpenCV

To detect the scene changes we performed a color histogram, by using
the OpenCV library, for each frame we compute the distribution of the
colors and, if the difference between two frames is beyond a threshold,
a scene change is detected. In order to compute the threshold we store
all the difference and compute the threshold as a weighted average of
all the differences. Moreover, since it’s not important to compute the
difference for each frame, we take 1 frame at second, in order to improve

performances.

Keywords extraction

To facilitate the work for the annotator, it is necessary to present him
an initial set of keywords automatically extracted, that he can then edit
if necessary. For this reason, we tested a few different approaches using

different libraries:

e Gensim ? which is a python library for natural language processing

and information retrieval

e Pke 2! is python module for keywords extraction which implements
different solutions such as YAKE, MultipartiteRank, PositionRank,
TopicRank, TextRank and SingleRank.

e Spacy ** which is a library implemented in python for natural lan-

guage processing

Ohttps://pypi.org/project /gensim/
https://github.com/boudinfl /pke
2https:/ /spacy.io/api/top-level



20 CHAPTER 1. THE EDURELL SYSTEM

e keyBERT 2 which is a keyword extraction technique that leverages
bert embeddings to create keywords and simple cosine similarity to
find the sub-phrases in a document that are the most similar to the
document itself. We tested two BERT models.

e Python-rake ?* (Rapid Automatic Keyword Extraction) is a python
module with the implementation of RAKE.

e PhraseMachine ?* which is library that identifies automatically mul-

tiwords.

In order to evaluate the correctness of the results, we compared the
keywords extracted with the keywords annotated by an expert, and
we calculated precision, recall and fl-score. The considered texts are
taken from the transcriptions of MOOC Youtube videos, in particular

we tested the keywords on five manually annotated videos.

| | Precision | Recall | F1-score
Gensim 0.142 0.25 0.158
Spacy 0.07 0.758 0.124
TopicRank 0.311 0.182 0.215
YAKE 0.356 0.226 0.256
SingleRank 0.244 0.142 0.162
PositionRank 0.256 0.139 0.165
TextRank 0.122 0.063 0.076
MultipartiteRank 0.344 0.205 0.239
BERT model 1 0.111 0.063 0.074
BERT model 2 0.167 0.094 0.011
LDA 0.253 0.137 0.164
RAKE 0.4 0.234 0.274
PhraseMachine 0.457 0.186 0.252
RAKE and || 0.459 0.269 0.32
Phrasemachine

Table 1.1: Keywords extraction results

Results in table 1.1 show that the best method is RAKE.

Bhttps://github.com/MaartenGr/KeyBERT
Zhttps://github.com /fabianvf/python-rake
Zhttps://github.com /slanglab/phrasemachine




1.6. SEMI-AUTOMATIC VIDEO ANNOTATION TOOL 21

import RAKE
import phrasemachine

import spacy

5 def rake_phrasemachine (text):

Rake = RAKE.Rake (RAKE.SmartStopList ())

rake_words = Rake.run(text, maxWords=3, minFrequency=3)

# Get the first top 15 results
concepts = [j[0] for j in rake_words [0:15]]

# Load model from spacy
nlp = spacy.load("en_core_web_sm")

doc = nlp(text.lower ())

t = [token.text for token in doc]
p = [token.pos_ for token in doc]
ph_words = phrasemachine.get_phrases(tokens=t, postags=p)

for ¢ in ph_words["counts"].most_common (3):
# Only bigrams or unigrams
if len(c[0].split(" ")) < 3:
concepts.append (c[0])

# Return lemmatized words

return lemmatize (concepts)

Code 1.4: Keywords extraction

In order to improve performances and to have more extracted keyword,
the proposed approach is to combine RAKE with the three most com-
mon keywords extracted with phrasemachine, as in Code 3.4, because
they have a very high precision with a final F1-score of 0.32.

The extracted keywords are finally lemmatized using nltk.



22 CHAPTER 1. THE EDURELL SYSTEM

1.6.3 Video annotation

Once the video is processed, the video can be annotated through the

video annotation interface.

EDURELL Video Annotation Ana

Forensic Archaeology and Anthropology - Part.1: Sexing a Skeleton (Final Edit)

) 1.54: this is to increase the size of the
A [4 ! ?l‘n 1 L‘nn 1.57: pelvic Inlet and pelvic outlet to

1.59: facilitate childbirth the first feature

2.02: that | want to show you is the sciatic notch
2.04: and you 'll see here on this female

2.06: pelvis that it s very wide and v shaped
2.09: if we take a look at the male pelvis.

2.11: you Il see that it ‘s deeper

2.13: narrower and more u shaped | ‘ve included
2.16: here an intermediate example this one
2.20: 1 've included because it 's important to

2.22: remember that these features exist on a

Add Relation Add description Save graph

>
0.08 3.03

Figure 1.8: Main interface for video annotation

In figure 1.8 there is the interface for the real time annotation. On
the left there is the video, and on the right the transcription. The
transcription moves synchronized with the video, and it contains the
concept highlighted in yellow, in order to make them more evident.

The non-linear consumption of the video is obtained trough two method-
ologies: using the transcript and the segmentation. Therefore, by click-
ing in one point of the transcript the time of the video will change
accordingly to synchronize with the clicked point. Moreover, each seg-
ment works as anchor point, each image below the video contains the
first frame of the segment, and by clicking on the image the relative
segment of the video will start.

Below the video there are four button:

e Add relation, it opens the relation interface that allows the insertion

of the prerequisite relation.

e Add description, it opens the add description interface that allows



1.6. SEMI-AUTOMATIC VIDEO ANNOTATION TOOL 23

the insertion of the concept description.
e Concepts, it opens the list containing all the concept

e Save graph, it saves the video on MongoDB and it downloads the
JSON-LD to the user

Add relation interface

am .
W Durham Add Relation

Target

Figure 1.9: Interface for prerequisite relation insertion

In figure 3.9 there is the add prerequisite interface. Here the video is
stopped and below the current video’s frame there are the last sentences
of the video’s transcription, with the concepts highlighted.

In order to add the prerequisite relation the user must fill the form
with the target of the relation, the prerequisite concept and the weight
of the relation.

By clicking on “Add box” it’s possible, but not mandatory, to add the

portion of the frame in which there is the concept.



24 CHAPTER 1. THE EDURELL SYSTEM

2R .

WP Durham T Add Relation
| : i

\ N — = 3 [ . Target:

skeleton Add Box

Prerequisite:

V
e
b
A Enter prerequisite
&
s 4
Weight

Strong v

Add Relation

Figure 1.10: Add bounding box
In figure 3.10 there is an example in which the target of the relation
is "skeleton" and, since it is present in the video, a box can be added in

order to point where the concept is located in the frame.

Add concept description interface

Add description

AN EXAMPLE COMPUTER NETWORK

Start: 6.44 - End: 7.14

Type

Definition

Add Description

Figure 1.11: Interface for concept description insertion

Here we can insert the concept’s description. In order to change the
start time and end time of the description, we can slide the bar below
the video. The play button is needed in order to re-watch the inserted

description.



1.6. SEMI-AUTOMATIC VIDEO ANNOTATION TOOL 25

Concepts Add new concept

communication

[ ]
communication link i
computer B
computer network ]
end device i
important point i
intermediary device ]
internet ]
internet cloud ]

Figure 1.12: Concepts list

Add concept interface

In 1.12 there is the interface with the list of all the concepts, by clicking
the trash button it’s possible to delete a concept.
Moreover, by accessing to the "Add new concept" tab the user is able

to add a new concept through the form in figure 1.13.

Concepts Add new concept

Concept:

Enter new concept

Add concept

Figure 1.13: Add new concept



26 CHAPTER 1. THE EDURELL SYSTEM

The system will check if the inserted concept is in the transcript, and

if present, all the occurrences of concept will be highlighted.

Annotation visualization

RELATIONS DEFINITIONS

Target Prerequisite  Weight Start time Concept Start End Type
node printer Strong 00:03:34 - networking 00:00:46 00:00:57 In depth ]
communication wired link Strong 00:05:01 & computer 00:03:07 00:03:29 Detpiien w
link network
communication wireless link  Strong 00:05:42 & pece 00:03:28 00:03:58 Cefiniticy [ ]
link

. . . communication 00:04:23 00:05:07 Definition &
wireless link  link Strong 00:06:03 & link
wired link link Strong 00:06:08 - wired link 00:04:54 00:05:07 Definition &
internet intermediary  Strong 00:06:35 . wireless link  00:05:09 00:05:39 Definition &

device

Figure 1.14: Annotation visualization

Below the images of the segmentation there is the interface as in figure
1.14 where it’s possible to see all the relations and definitions added. An
annotation can be deleted by using the trash button.

By clicking the “Graph” button, the user is able to see the concept
map of the video, and thus all the relations inserted. In figure 1.15 there
is a simple example of the graph, the concept map says that in order to
understand what is a "computer network" the student must first learn
what is a "node" and a "communication link". By iterating the process

until the root the student can know the learning path.



1.6. SEMI-AUTOMATIC VIDEO ANNOTATION TOOL

27

Relations

end devibe

intermediary device

printer

Figure 1.15: Concept map visualization



28 CHAPTER 1. THE EDURELL SYSTEM

1.6.4 Analysis

Analysis
Select type of Analysis

Data summary Agreement Linguistic analysis Fleiss kappa

Figure 1.16: Type of analysis selection

The analysis module provides tools to analyze annotations, four types

of analysis are implemented:

e Data Summary
e Agreement
e Linguistic Analysis

e Fleiss kappa

Data Summary

Data Summary

Video title Forensic Archaeology and Anthropology - Part.1: Sexing a Skeleton (Final Edit)
Annotator Maria Rossi
Number of total descriptions 37

Number of definitions 27

Number of in depths 10

Number of relations 100

Unique relations 98

Strong relations 100

Weak relations 0

Number of concepts 60

Number of transitive relations 17

Figure 1.17: Data summary



1.6. SEMI-AUTOMATIC VIDEO ANNOTATION TOOL 29

Data summary, as in figure 1.17, shows quantitative analysis of the se-
lected annotation, either considering the graph of relations and concept
descriptions.

Quantitative analysis comprehends the number of descriptions (both
definitions and in depths), the number of relations (strong and weak),
number of concepts and number of transitive relations. A prerequisite
relation A — B is transitive if it already exists a path from A to B, for
instance A — C' and C' — B.

Linguistic Analysis

Linguistic analysis allows to search for pairs in the annotation that
match specific criteria set in the interface (e.g., show all relations where
“computer” is prerequisite and the weight is weak) and see them in their
context. For each relation it’s also possible to explore their context (next
and previous sentence), the linguistic analysis of the sentence where the
relation was entered (POS) and the relation graph of the two concepts

involved in the relation (Graph).

Context POS Graph

Prerequisite: node
Target: computer network

The relation has been annotated in the following context:

If the scenario is given we'll start with the definition of a computer network,
a computer network is a set of -s connected by communication links.

Previous sentence Next sentence

Figure 1.18: Linguistic Analysis

In figure 1.18, we can see an example of the context in which the rela-

tion node — computer network is annotated, showing us the transcrip-



30 CHAPTER 1. THE EDURELL SYSTEM

tion of the video in the point where the annotator added the relation,

and thus why the annotator added this relation.

Agreement

Agreement between two annotations is a measure of similarity and an-
notation reliability. The agreement is calculated through the Cohen’s
kappa, which value ranges from 0 to 1, where 1 identifies perfect agree-

ment. Cohen’s kappa is defined as:

Po_Pe

L —
1-P,

Where P, is the percent of concordance between the two concept
maps, P, denotes the agreement expected by chance (i.e., the probability
of each individual category). This metric utilizes also the transitivity of

relations to check the concordance between two annotations.

Fleiss kappa

EDURELL computes Cohen’s and Fleiss’ kappa: the first is used be-
tween two annotations selected in the analysis interface, the latter is
computed between all annotations produced for the same video and is
defined in the same way of the Cohen’s kappa.

1.6.5 Burst Analysis and temporal reasoning

In order to automatic extract concept maps and concept descriptions we
explored the burst [Ado+19] solution, originally intended for prerequisite
relations in texts document, that we applied on the transcription of the
videos.

Kleinberg uses a two state automaton to describe the periods of an
event along a time series (e.g., a document). The automaton is in the
first state if the event has a low occurrence, but then it can move to the
second state if the event’s occurrence it’s greater then a threshold, and it

can go back to the first state if its occurrence goes below the threshold.



1.6. SEMI-AUTOMATIC VIDEO ANNOTATION TOOL 31

The periods of time in which the event is in the second state are called
burst intervals.

If applied to the transcription of a video, Kleinberg’s algorithm can
be used to detect the bursting intervals of concepts. Therefore, we can
detect the burst intervals of a list of concepts in order to estimate when
the concept are explained. Moreover, we can apply spatial-temporal rea-
soning on the extracted burst intervals in order to identify prerequisite
relations.

Therefore, the algorithm takes as input the text to analyze in CoNLL
format and a list of lemmatized concepts, and it’s structured in four
phases: 1) find words occurrences, 2) extract bursts, 3) detect temporal
patterns, and finally 4) extract prerequisite relations.

To find the occurrences of the concepts in the transcription of the
video we search each word in the CoNLL file. This allow us to look for
all the words of the text with the corresponding lemmatized form.

Then, we extract the bursts intervals, based on Kleinberg algorithm
by using the python library pybursts?®. These bursts intervals are the
points in the video where the instructor is talking about a concept, and
they are defined by the starting sentence and ending sentence, that we
can easily transform in starting time and ending time. If a concept has
more bursts intervals, we take the longest one as "Definition" type and
the others as "In depths".

Once the burst intervals are discovered, we can proceed to analyse
the temporal patterns by exploiting the Allen’s interval algebra. Allen
defined all the possible relations between time intervals for temporal
reasoning. A relation can be of the types: X precedes Y , X meets Y, X
overlaps with Y, X starts Y, X during Y, X finishes Y, X is equal to Y.
The burst algorithm assigns to each type of relation a weight accordingly
to how related is to the prerequisite relations. For instance the relation
X overlaps Y implies that the concept X is firstly explained and its
conclusion overlaps with the introduction of Y. This is a good indicator

of prerequisite relation, and thus this Allen relation has an high weight.

Zohttps:/ /pypi.org/project /pybursts/



32 CHAPTER 1. THE EDURELL SYSTEM

Finally, for each two distinct concepts, all the weights associated to
the burst pairs are combined and normalized. Therefore, the output
of the algorithm is every possible prerequisite relation with the weight
computed, 0 if there is no relation between the two concept.

The greater the assigned weight is the greater is the probability to

have a correct prerequisite relation.

0.8

0.6

Precision

0.4

0.2

0 20 40 60 80

Top n relations

Figure 1.19: Precision of the top relation

As we can see in Figure 1.19, the average precision (obtained by com-
paring the burst’s results with the manual annotations of five videos)

decrease as the assigned weight decrease.



1.6. SEMI-AUTOMATIC VIDEO ANNOTATION TOOL 33

Parameters selection

In order to select the best parameters we used a brute force approach
by trying all the possible combinations in order to have the best results
in the metrics that we describe in next section. The parameters of the

burst are the following:

e Threshold: a relation is taken as such, if its weight is bigger than
the threshold. For our test we selected as threshold 0.7.

e Top: number of the top relation to take. We took the top 90 rela-

tions.

e S and Gamma: they are taken from the implementation of the Klein-
berg algorithm from the pybursts library, and they are respectively
the base of the exponential distribution that is used for modeling the
event frequencies and the coefficient for the transition costs between

states. In our case we selected 1.05 and 0.0001.

e Max gap: maximum number of sentences between two bursts after
which no relation will be assigned. It is used to reduce the number

of 'before’ and ’after’ relations. We assigned as max gap 1 sentence.

e Allen weights: they are the weight of the Allen relations and they

are chosen in compliance of as explained in [Ado+19].

In the following Code 3.5 there is the function to calculate all the
metrics with different parameters and to create a CSV file containing all

the results obtained.



34 CHAPTER 1. THE EDURELL SYSTEM

def get_scores_for_parameters (ann_map, concepts):
thresholds = [0, 0.7, 1.5, 2.5, 3.5, 4.5]
top_n = [60, 70, 90]
ss = [1.05, 1.2, 1.3, 1.4]
gammas = [0.001, 0.0001, 0.00001]
max_gaps = [1, 2, 3]

res_df = pd.DataFrame (columns=["threshold", "top",
"S“ s llgamma" , ||maX_gap n , n VEDH ,
"GED", "Agreement", "LO",
IIPNII])

for t in thresholds:
for s_ in ss:
for g in gammas:
for m in max_gaps:
for top in top_n:
burst_map = Burst(text, concepts,

video_id, conll, top_n=top,
threshold=t, max_gap=m,
gamma=g, s=s_)\

.launch_burst_analysis ()

# Calculate all metrics,

# returns a dict with results

res =

calculate_metrics(burst_map, ann_map,
concepts, t, s_, g, m , top)

# Append current results

res_df = res_df.append(res,

ignore_index=True)

# Write results in a csv file

res.to_csv("results.csv", sep=";", encoding="utf-8")

Code 1.5: Burst best parameters



1.6. SEMI-AUTOMATIC VIDEO ANNOTATION TOOL 35

Interfaces for burst extraction

The tool allows the extraction of the graph with the burst method ap-
plied with two metodologies: semi-automatic and full automatic.

In the semi automatic approach, the user is asked to insert the con-
cepts that are present in the video. For this purpose, a list of concepts
are initially shown to the user, and he can edit as desidered. In order to
facilatate the insertion, it is also shown the transcript of the video with

the concepts highlighted.

Launch burst analysis

Add or remove concepts, then launch Burst Analysis

Concepts Add new concept Transcr'\pt

hello everyone | welcome you all to this
wonderful course on computer networks |

am your instructor here to take you
throughout this journey on computer networks
before we start let 's figure

out to whom this course is actually

intended to this course is mainly for

the undergraduate students and this

communication

]

communication link

[ ]

computer

computer network

data

course is useful for the students who
are preparing for their gate exams and
not only gate exams this course will
surely help the students to crack
networking based interviews this course
can be a prerequisite course to CCNE
international certification course and
layer ] if you want to demystify all the

netwarkina technalnniec and iarnnne niced

end device

L]

intermediary device

internet

L]

Launch burst Analysis

Figure 1.20: Semi automatic interface

The initial concepts that are shown here are the one automatically
extracted (as in section 3.6.2), but if a user has already annotated the
selected video, the concepts are the one that the annotator inserted.
This is useful in order to have a more precise extraction and in order to
be able to do a comparison between the burst method and the manual
extraction.

In the automatic approach the user is not able to edit the concepts,
and the burst analysis is performed instantly.

In both cases, semi-automatic and automatic, once the graph is ex-
tracted, an interface containing all the info regarding the extraction is
shown to the user. The interface is composed by three tabs: Data Sum-
mary, Definition and Relations.

The first tab contains all the quantitative analysis performed by the



36 CHAPTER 1. THE EDURELL SYSTEM

Burst analysis results

Data Summary Definitions Relations
Video title Forensic Archaeology and Anthropology - Part.1: Sexing a Skeleton (Final Edit)
Number of concepts 54

Number of extracted descriptions 31

Number of definitions 24
Number of in depths 7
Number of extracted relations 920
Unique relations 920
Number of transitive relations 25
Agreement with Maria Rossi 0.406
VEO with Maria Rossi 0.453

Figure 1.21: Burst’s results interface

data summary analysis, and if a user has annotated the selected video,
it shows the metrics in relation with the annotator.

The second tab contains all the descriptions extracted by the burst.

Data Summary Definitions Relations

Concept Start End Type
skeleton 0:00:08 0:01:14 Definition >
skeleton 0:08:19 0:08:56 In Depth >
bone 0:00:08 0:01:39 Definition >
> 016/9:50
— establishing 0:08:19 0:09:15 Definition >

Figure 1.22: Burst’s extracted definitions

With this interface, in figure 1.22, the user is able to watch the points
in the video where the concepts’ descriptions are extracted. In the last
tab there is a visualization of the relations extracted, and thus the con-
cept map.

In this last tab, it’s possible to browse the graph to see the learning
paths extracted by the Burst method, as in figure 1.23.



1.6. SEMI-AUTOMATIC VIDEO ANNOTATION TOOL 37

Data Summary Definitions Relations

Figure 1.23: Burst’s extracted relations

1.6.6 Evaluation

To evaluate the extracted prerequisite relations we compared them with
the manual annotated ones. In particular we considered the average of
five manual annotated videos and we compared the bursts results with
three baseline method’s results, using different metrics. All the methods
take as input the same concepts which the manual annotator added to
his graph.

Baseline methods

Method 1 - hyponyms, hypernyms and meronyms.

A hyponym is a word whose meaning is more specific than its hyper-
nym. The hypernym has a broader meaning than that of a hyponym (e.g.
"machine learning" and "supervised learning"). A meronym is in a part-
of relationship with its holonym. For example, "finger" is a meronym
of "hand". Therefore, prerequisite relationships often exists between
hyponym hypernym and meronyms concept pairs. For this reason we

extracted from text these relations using the nltk library, exploiting the



38 CHAPTER 1. THE EDURELL SYSTEM
Wordnet interface

Method 2 - Reference Distance.

As explained in section 2.3.2 RefD is a metric that models how two
concepts refers to each other. We exploited the Wikipedia Python li-
brary?” to calculate the reference distance between two concepts, and
if above a threshold (which is defined in [Lia+15|) then a prerequisite

relation is obtained.

Method 3 - Wikipedia pages.

As third baseline method we used the one proposed by Shuting Wang
and Lei Liu in [WL16]. In their approach, they used three sets of features
extracted with Wikipedia in order to obtain the prerequisite relations.
The first feature is the Usage feature which captures whether a con-
cept is used in another concept’s definition. The second feature is the
Content Similarity. This feature captures the lexical similarity between
Wikipedia concepts using cosine similarity between the concept vector
and article vector. The last feature is the Learning Level which measure
whether a concept has a lower learning level and should be learned first.
To calculate the Learning Level it calculates the range of topic coverage,
this says that the more topic the concept cover the more basic the con-
cept is, and moreover it uses the number of in-links/out-links received

in Wikipedia pages.

2Thttps: / /pypi.org/project /wikipedia/



1.6. SEMI-AUTOMATIC VIDEO ANNOTATION TOOL 39

Metrics and results on texts

Before the evaluation of the automatic methods on the video’s transcrip-
tion, we tested each method on a chapter of a computer science’s book

by comparing a manual obtained concept map with the automatic one.

In the RefD method, discussed in [Lia-+15], they used the CrowdComp
dataset [TC12] to predict whether one page in Wikipedia is prerequisite
of another page. With a threshold of 0.05, they obtained an average
accuracy of 0.61, but in our results, with the same threshold we obtained
an accuracy of 0.33. Moreover, we tested the RefD method with different
thresholds and obtained the following F1 score results.

0.2

F1 score

0.05

0 0.2 0.4 0.6 0.8

Thresholds

Figure 1.24: RefD results with different thresholds

As shown in figure 1.24 we also got best results with the threshold
0.05 with an F1 score of 0.24. Finally, we tried to get only the top 150
relations with highest Reference Distances and we obtain a precision of
0.356, a recall of 0.034 and F1-score 0.063.

In the Wikipedia Pages method, described in [WL16|, they compared



40 CHAPTER 1. THE EDURELL SYSTEM

the results obtained with a manual annotation, and by using 60% of the
Content Similarity feature and 60% of the Learning Level feature, they
obtained an F1 score of 0.52. With the same thresholds we obtained a
score of 0.198. Following a table that summarize all the results with the
different thresholds, where the columns are the Content Similarity and

the rows the Learning Levels.

40% 60% 80%
40% 0.198 0.198 0.201
60% 0.198 0.198 0.204
80% 0.202 0.204 0.208

Table 1.2: Wikipedia pages results with different thresholds

The Burst method in [Ado+19] for the top 150 relations they obtained
an average accuracy of 0.84, in our case we obtained an accuracy of 0.6.
Moreover, they obtained a precision of 0.6 for the top 150 relations and

we got a precision of 0.7.



1.6. SEMI-AUTOMATIC VIDEO ANNOTATION TOOL 41

Metrics and results on videos

The first metrics that we used to evaluate the performances on videos

are the precision and recall, defined as:

P
recitsion = 7TP + FP
TP
P
fFecall = 755N

Where T'P stands for True Positive, which are the number of relations
that have been extracted by both the manual annotator and the auto-
matic method, F'P (False Positive) are the relations extracted by the
automatic method but not by the annotator, and F'N (False Negative)
are the relations that have been extracted by the annotator but not by
the automatic method.

In the following figure we can see the comparison between baseline
methods and the burst.

0.8
hyponyms, hypernyms and meranyms

07w
0.6

0.5

Burst
04 RefD .

Precision

0.3

0.2 Wikipedia pages
0
0.1

0
] 0.2 0.4 0.6 0.8 1

Recall

Figure 1.25: Precision and recall of the automatic methods

The results in figure 1.25 show that the Burst method outperforms



42 CHAPTER 1. THE EDURELL SYSTEM

RefD in both precision and recall, it has an higher precision compared
to the Wikipedia pages, and finally, it has a lower precision than the
hyponyms method but a bigger recall.

However, considering the F'1-score, which is the harmonic mean of the
precision and recall, the Burst method outperforms the others.

The Fl-score is defined as:

Precision - Recall

F18 =2-
core Precision + Recall

Results are shown in table 1.3:

Hyponyms| RefD Wikipedia | Burst
pages
F1 Score |0.09 0.31 0.25 0.4

Table 1.3: F1 scores prerequisite relations extraction

Vertex Edge Overlap is a basic metric for graph similarity, it measures
the similarity between two graphs by calculating the overlap between

their edges and vertex. It’s defined as:

VNV |+ |ENE|
V[ + V'] +|E| + ||

VEO(G,G) =2

Hence, The Vertex Edge Overlap is obtained by dividing the total
number of vertexes and edges that are shared between the two graphs,
with the total number of vertexes and edges. Following the comparison
between the burst method and the baseline method.

Hyponyms| RefD Wikipedia | Burst
pages
VEO 0.141 0.29 0.322 0.45

Table 1.4: VEO results

The results show that on average the burst analysis produces more
similar graphs, and thus, with more vertexes and edges in common with

the manual graph.



1.6. SEMI-AUTOMATIC VIDEO ANNOTATION TOOL 43

A well known metric used in graph analysis to measure the similarity
between two graphs is the Graph Edit Distance. This metric counts
the number of operations (such as edge insertion or deletion) needed in
order to transform the first graph into the second one. Therefore, the
lower the Graph Edit Distance is, the more similar the two graphs are.

Hyponyms| RefD Wikipedia | Burst
pages
GED 76.5 146.5 228 97.3

Table 1.5: GED results

Here, results show that the Hyponyms-Hypernyms-Meronyms method
has a lower distance, but the burst method outperforms both RefD and
Wikipedia pages.

Another metric we used is the Agreement, which we defined in section
3.6.4

Hyponyms| RefD Wikipedia | Burst
pages
Agreement | 0.05 0.13 0.04 0.276

Table 1.6: Agreement results

Agreement shows that the burst concept maps are more in concor-
dance with the manual ones.

Studying the properties of the single concepts can clarify some impor-
tant features of the concept map. For example, if a concept has an high
in-degree, it has a lot of prerequisite and for this reason it is an advanced
concept. On the contrary, if a concept has an high out-degree, it is the
prerequisite of many concepts, and thus it is a fundamental concept to
learn. In order to evaluate the similarity between the fundamental /ad-
vanced concepts of the automatic extraction and the fundamental/ad-

vanced concepts of the manual extraction we used the metrics LO and
PN.



44

CHAPTER 1. THE EDURELL SYSTEM

for graphs in graphs:

nx_graph = graphs["graph"]

rater = graphs["author"]

(]

for x in nx_graph.nodes():

leafs

if nx_graph.out_degree(x) == 0\
and nx_graph.in_degree(x) >= 1:

leafs.append ({x: nx_graph.in_degree(x)})

for it in leafs:

1_df.loc[next(iter(it)), rater] = it[next(iter(it))]

roots = []
for x in nx_graph.nodes ()
if nx_graph.in_degree(x) == 0\
and nx_graph.out_degree(x) >= 1:

roots.append ({x: nx_graph.out_degree(x)})

for it in roots:

r_df .loc[next(iter(it)), rater] = itl[next(iter (it))]

; 1_df .astype (float)

df _1_0 = 1_df.fillna(0)

LO

df _1_0.corr (method=’pearson’).loc["Burst", "Annotator"]

r_df .astype(float)
df _r_ 0 = r_df.fillna(0)

PN

df _r_0.corr (method=’pearson’).loc["Burst", "Annotator"]

34 return LO, PN

Code 1.6: LO and PN

By using the library networkx?®, we create two Networkx graphs, and
then we get all the roots and leafs of the two concept maps (manual and

https:/ /networkx.org/



1.6. SEMI-AUTOMATIC VIDEO ANNOTATION TOOL 45

automatic) in order to create a dataframe with as indexes the concepts
and as columns the number of in/out degree of the manual annotation
and the automatic method. Then we calculate the correlation between
the column with the automatic values and the column with the manual
values. In order to evaluate the correlation we used the Pearson correla-
tion, as in Code 3.6, which it has results between 1 and 1. 1 for maximum

correlation, 0 for no correlation and -1 for negative correlation.

0.35

0.3 RefD

Burst
[ ]

0.25

0.2
o |'I}n'EIEII'I';.n"1'|S. NYPernyms and Meronyms
]

0.15wWikipedia Pages .

0.1

0.05

PN

Figure 1.26: LO and PN results

As shown in figure 1.26, all the methods have a low result in the
LO metric, but Burst method outperforms the others in the PN metric,
showing that the burst method is a good way to find the advanced

concepts.

Following in table 1.7 there is summary of all the results obtained and

some conclusions about the metrics.



46 CHAPTER 1. THE EDURELL SYSTEM
Hyponyms| RefD Wikipedia | Burst
pages

Precision 0.69 0.338 0.15 0.37
Recall 0.05 0.335 0.79 0.48
F1 Score 0.09 0.31 0.25 0.4
VEO 0.141 0.29 0.322 0.45
GED 76.5 146.5 228 97.3
Agreement 0.05 0.13 0.04 0.276
PN 0.27 0.06 0.04 0.55
LO 0.152 0.28 0.128 0.238

Table 1.7: Summary of the results discussed in the previous pages

The Burst method performs in line with the baseline methods, and

in most metrics outperforms the others automatic methods, such as in

F'1 score, Vertex Edge Overlap and PN metric.

All the results discussed were obtained using five videos from two

domains, a computer science domain and an archaeology domain. Fol-

lowing the tables containing the results per domain.

Hyponyms| RefD Wikipedia | Burst
pages

Precision 0.584 0.363 0.116 0.347
Recall 0.034 0.192 0.733 0.471
F1 Score 0.064 0.241 0.199 0.388
VEO 0.093 0.277 0.27 0.435
GED 102.5 162.0 317.0 119.0
Agreement 0.01 0.079 0.007 0.273
PN 0.057 -0.13 0.125 0.148
LO 0.144 0.292 0.154 0.293

Table 1.8: Summary of the results in the archaeology domain




1.7. VIDEO AUGMENTATION FOR LEARNERS 47

Hyponyms| RefD W ikipedia | Burst
pages

Precision 0.8 0.313 0.177 0.387
Recall 0.067 0.479 0.863 0.483
F1 Score 0.121 0.378 0.294 0.428
VEO 0.19 0.317 0.371 0.474
GED 50.5 131.0 139.0 75.5
Agreement 0.099 0.18 0.055 0.28
PN 0.482 0.245 -0.043 0.948
LO 0.161 0.269 0.102 0.182

Table 1.9: Summary of the results in the computer science domain

1.7 Video augmentation for learners

In this section, we describe the implementation of the augmentation tool,
all the hypervideo functionalities implemented and all the interfaces are

shown.

1.7.1 Goals and description

As already mentioned, educational videos represent one of the most
popular formats in online education, but they can also suffer of several
limitations. They can for instance be hard to navigate when you need to
recall concepts. Moreover, they generally lack of explicit tables of con-
tents or other indexing systems for exploring the video content. With
this tool the extracted knowledge graph obtained from the EDURELL
Video Annotation Tool will be used to develop augmentation services
that help the learner to face some of the issues above. In particular,
the proposed application offers anchor points for the concepts that the
lecturer is explaining. Additionally, it shows the prerequisites that the
student has to know in order to get the current concept, with an inter-

active concept map.



48 CHAPTER 1. THE EDURELL SYSTEM

1.7.2 Video Exploration

When the user log to the system it accesses to the dashboard with the

following interface in figure 1.27.

Welcome to your EDURELL dashboard!

Search for videos within the catalog Q

Your history

[GoMPUTER S

S
ETWORKS
T

COMPUTER
ETWOR|

14 -

Forensic Archaeology and Forensic Archaeology and Lecture 1.1 — What Is

=

o |
Introduction to Computer

Anthropology - Part.1. Anthropology - Part.2:... Machine Learning — [... Networks
Videos

14 -

Lecture 1.1 — What Is Forensic Archaeology and Forensic Archaeology and o Computer
Machine | earnina — [ Anthronaloav - Part 1 Anthronoloav - Part 2 N orks

Figure 1.27: Video augmentation tool dashboard

Here it’s possible to look for a specific video through the search bar,
or to continue to watch a previous watched video through the history
section. When the user enters in a video it accesses to the following
interface for the video augmentation.

Computer Networks: Crash Course Computer Science

@ Computer Networks: Crash Course Computer Science ... UEnEas ‘I|7‘
Guarda pil..
MAG ADDRESS
s 2 Map of concepts' flow |Z
2
.
\
.
0
o 4

@5% 0% 0% 0% 0%
00:02:56" Wl"/00:0343/ W "00:0444 | W 60:0536 M| 00611
/ 5 (s | o
/ (% G
Part4 Part 5 Part 6 Part 7 Part 8 |

»

Figure 1.28: Video Augmentation



1.7. VIDEO AUGMENTATION FOR LEARNERS 49

On the right of the video there is the Transcript container and the
Map of concepts’ flow. The user can enlarge or reduce both containers.
The transcript container shows all the subtitles synchronized with the
video, and by clicking on a subtitle the video will redirect to the selected
time. These subtitles are obtained through the youtube-transcript-api
and they can be downloaded with the corresponding button at the top

of the transcript.

Transcript ‘ oy | 2 ‘

00:03:30
at the same time also

00:03:33
This is called a collision, and the data gets all garbled up, like
two people trying to

00:03:37
alk on the phone at the same time.

00:03:38
Fortunately, computers can detect these collisions by listening to
he signal on the wire.

00:03:43

1e most obvious solutio
ait for silence, the

Figure 1.29: Transcript

The Map of concepts’ flow container shows the concept map of the

video, as in figure 1.30.

4= Map of concepts' flow

eeeeeeee

Figure 1.30: Map of concepts’ flow



(0] CHAPTER 1. THE EDURELL SYSTEM

This panel allows you to take advantage of the prerequisite relations
to browse the video and deepen some concepts. When a prerequisite
relations starts, the involved nodes are colored with light red, moreover,
the system will automatically zoom the map to the concept that is being
explained at the current moment, for instance in figure 1.30 the concept
collision is being explained and for this reason it’s highlighted to the user
with the color red. In this way the user is able to see which concepts are
needed, and by clicking on a concept, markers appears in the video’s bar
to highlight where the concept is explained. This allows an easy video
navigation in order to reach all the concepts needed in a faster way.

o0 o—8—
P o 324/9:20

Green circles are the main definitions of the concept

Additionally, by searching a concept in the search bar a subgraph of
the concept is displayed to the user.

— .

per"For‘mance measure -
experience

1

learning
. g
TR
- " machine |learning P
- regcommender system
" program e
computer ! —
O learning algorithm
learning problem . unsupervised learning
.
E supervised learning

reinforcement learning

Legend Prerequisites Targets Primary notions

Figure 1.31: Subgraph of a concept



1.7. VIDEO AUGMENTATION FOR LEARNERS 51

This subgraph shows to the user the learning path of the concept.
In this visualization the red concept is the one that the user selected,
the blue concepts are the primary notions, which are the fundamen-
tal concept that does not have any prerequisite, the pink concepts are
the prerequisites of the selected concept and the grey concepts are the
concept that need the selected concept in order to be learnt.

Moreover, below the video there is the segmentation for the non linear

consumption of the video as in figure 1.32.

P o) 6497920

Fragments navigation

00:00:08 :03:0:

Part 1 Part 2 Part 3 Part 4 Part 5 Part 6

Figure 1.32: Non linear consumption

Here, by hovering the mouse on an image, it shows all the concepts
that are explained in that part of the video, thus a student is able to
skip to the point he need.

The last feature implemented is the ability to take notes while watch-

ing the video.

Notes

A network is composed by more computers that communicates..

Figure 1.33: Notes

Figure 1.33 shows the textboard in which a student can type his notes

about the topic he is learning.



52 CHAPTER 1. THE EDURELL SYSTEM

1.8 Server deployment

In order to deploy the project and to allow the access at all the anno-
tators and learners, we used Gunicorn® which is a Python Web Server
Gateway Interface HT'TP Server for UNIX. Gunicorn allows the com-
munication between the web server and an application.

Nginx® is a light with high performances web server, which takes care
of handling https connections and the requests that are meant to reach
our applications and pass them trough Gunicorn. So, Gunicorn works
as in between web server and the Flask application.

The server must support also the deployment of both the Annotation
tool and video augmentation tool. In order to allow the simultaneously
run of the two projects, Nginx will redirect the HT'TP request to two
different locations.

server {
listen 138.251.47.105:5000 default server;

location / {

oot /var/www/se21-p21/src/react-app/build;
index index.html;
try files $uri $uri/ =404;
}
location /fapi {
include proxy params;
proxy pass http://localhost:5000;
1

location *~ fannotator/ {

include proxy params;

proxy_pass http://127.8.0.1:5058/;

Figure 1.34: Nginx configuration

https://gunicorn.org/
30https://www.nginx.com/



1.8. SERVER DEPLOYMENT 93

The annotation tool is implemented using the location "annotator",
in this configuration every request to "/annotator” will be redirected
to the annotation tool and the requests to "/" will be redirected to the
video augmentation tool.

In conclusion, in order to allow the automatic start of the tool we

used a service that starts automatically on server boot.



